Because angle brackets can also represent (or occur in) the comparison operators <
, >
, <=
and >=
, macro expansion can't ignore commas inside angle brackets like it does within parentheses. (This is also a problem for square brackets and braces, even though those usually occur as balanced pairs.) You can enclose the macro argument in parentheses:
FOO((std::map<int, int>), map_var);
The problem is then that the parameter remains parenthesized inside the macro expansion, which prevents it being read as a type in most contexts.
A nice trick to workaround this is that in C++, you can extract a typename from a parenthesized type name using a function type:
template<typename T> struct argument_type;
template<typename T, typename U> struct argument_type<T(U)> { typedef U type; };
#define FOO(t,name) argument_type<void(t)>::type name
FOO((std::map<int, int>), map_var);
Because forming function types ignores extra parentheses, you can use this macro with or without parentheses where the type name doesn't include a comma:
FOO((int), int_var);
FOO(int, int_var2);
In C, of course, this isn't necessary because type names can't contain commas outside parentheses. So, for a cross-language macro you can write:
#ifdef __cplusplus__
template<typename T> struct argument_type;
template<typename T, typename U> struct argument_type<T(U)> { typedef U type; };
#define FOO(t,name) argument_type<void(t)>::type name
#else
#define FOO(t,name) t name
#endif