4

Rで予測パッケージを使用していますが、これにより予測オブジェクトが作成されます。

7ビットラッパーを使用してMQL4コードでRを使用できるように、予測をベクトルに変換したいと考えています。

予測コードの例:

> forecast(fit, h=5)
     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
1057       1.605098 1.602110 1.608087 1.600528 1.609668
1058       1.605109 1.600891 1.609327 1.598658 1.611561
1059       1.604868 1.599723 1.610012 1.597000 1.612735
1060       1.604978 1.599037 1.610919 1.595892 1.614065
1061       1.605162 1.598511 1.611813 1.594990 1.615335

これらのForecast、lo 80、hi 80などをベクトルに格納して、インジケーターで使用するためにRからMQL4にプルできるようにしたいと思います。

私は試した:

> test1 <- forecast(fit, h=5)
> test1
     Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
1057       1.605098 1.602110 1.608087 1.600528 1.609668
1058       1.605109 1.600891 1.609327 1.598658 1.611561
1059       1.604868 1.599723 1.610012 1.597000 1.612735
1060       1.604978 1.599037 1.610919 1.595892 1.614065
1061       1.605162 1.598511 1.611813 1.594990 1.615335

ただし、予測を引き出すと、次のようになります。

> test1$Forecast
NULL

頭を動かすと、構造は次のように表示されます。

> head(test1)
$method
[1] "ARIMA(2,1,2)                   "

$model
Series: mt4test$close 
ARIMA(2,1,2)                    

Coefficients:
          ar1      ar2     ma1     ma2
      -0.5030  -0.9910  0.4993  0.9783
s.e.   0.0123   0.0089  0.0202  0.0140

sigma^2 estimated as 5.437e-06:  log likelihood=4897.31
AIC=-9784.61   AICc=-9784.55   BIC=-9759.81

$level
[1] 80 95

$mean
Time Series:
Start = 1057 
End = 1061 
Frequency = 1 
[1] 1.605098 1.605109 1.604868 1.604978 1.605162

$lower
          80%      95%
[1,] 1.602110 1.600528
[2,] 1.600891 1.598658
[3,] 1.599723 1.597000
[4,] 1.599037 1.595892
[5,] 1.598511 1.594990

$upper
          80%      95%
[1,] 1.608087 1.609668
[2,] 1.609327 1.611561
[3,] 1.610012 1.612735
[4,] 1.610919 1.614065
[5,] 1.611813 1.615335

どんな助けでもいただければ幸いです。それは私が私のいじくり回すハハで前進するのを妨げています。

前もって感謝します。

4

1 に答える 1

3

関数forecast()はリストを生成します。関数str()を使用すると、このオブジェクトの構造を確認でき、関数を使用するとnames()、このリストの各要素の名前を確認できます。

library(forecast)
fit <- Arima(WWWusage,c(3,1,0))
test1<-forecast(fit)

names(test1)
[1] "method"    "model"     "level"     "mean"      "lower"     "upper"     "x"        
[8] "xname"     "fitted"    "residuals"

 #to extract forecast
test1$mean

Time Series:
Start = 101 
End = 110 
Frequency = 1 
 [1] 219.6608 219.2299 218.2766 217.3484 216.7633 216.3785 216.0062 215.6326 215.3175 215.0749

 #or as vector
as.vector(test1$mean)
 [1] 219.6608 219.2299 218.2766 217.3484 216.7633 216.3785 216.0062 215.6326 215.3175 215.0749

 #to extract upper interval
test1$upper

           80%      95%
 [1,] 223.5823 225.6582
 [2,] 228.5332 233.4581
 [3,] 232.7151 240.3585
 .... .... ....
[10,] 260.7719 284.9625

 #to extract lower interval
test1$lower

 #to extract only 95% upper interval
test1$upper[,2]
于 2012-12-14T17:25:19.450 に答える