0

添付画像をご覧くださいここに画像の説明を入力

画像では、2 つの円弧 (青と緑) とそれらを結ぶ赤い線が見えます。これにより、表面ができます (丸みを帯びたアーチだと思いますが、間違っている場合は修正してください)。

私の質問は、この構造をシミュレートする方法です。

1-この構造の関数 f(x,y,z) をどのように持つことができますか

2-ライン(アーチ面)交点の求め方

それに3ポイント?

要するに、特定の視点/視点からこの構造のポイント (x、y、z) を取得したいのです。例: P=[19,-62,-1.2]

ここに画像の説明を入力

Matlab コードの方が便利です。

いくつかの詳細情報:

1 番目のカーブ上のポイント

p2 = [17.9463,-59.7586,-1.0200]; % start [x,y,z]
p0 = [19.1163,-58.5886,-1.0200]; % center
p1 = [20.2863,-59.7586,-1.0200]; % End

2 番目の曲線上の点

p4 = [17.9463,-59.7586,-1.78]; 
p0_ = [19.1163,-58.5886,-1.78]; 
p3 = [20.2863,-59.7586,-1.78];

半径: r=1.17;

何か案が?

4

1 に答える 1

2

曲線の描画から正確な関数を取得することは、やや不正確な作業です。ただし、仮定と概算を行うと、適切な概算を行うことができます。

これが半円筒形であると仮定しましょう。円形の断面は xz 平面にあります。つまり、3 次元曲線は次のようになります。

F(x, y, z) = ( x - x 0 ) 2 + ( z - z 0 ) 2 = r 2

ここで、x 0z 0は中心座標で、rは半径です。

プロットの左軸が y 軸で、z 軸が右にあると仮定します。私が知る限り、それらのおおよその値は次のとおりです。

x 0 ≈ 19.1
z 0 ≈ -59.6
r ≈ 1.2
yは -1 から -1.7 の間で変化するようです

とを使用meshgridsurfて、3 次元プロットを簡単に作成できます。

r = 1.2;
x0 = 19.1;
z0 = -59.6;
[X, Y] = meshgrid(17.9:0.05:20.3, -1.7:0.05:-1);
Z = z0 + abs(sqrt(r ^ 2 - (X - x0) .^ 2));
surf(X, Y, Z)

次の 2 点に注意してください。

  1. x 軸と y 軸の両方で解像度を 0.05 に設定しました。
  2. absの結果に適用して、sqrt望ましくない複雑な結果を排除しました。

結果は次のようになります。

ここに画像の説明を入力

于 2012-12-17T14:41:46.143 に答える