2

次のコードを使用して、指定されたカーネル(私の場合はガウス)で画像の畳み込みを計算します。毎回異なる結果が得られ、その結果の画像は、空間領域での畳み込みによって得られたものにさえ近くありません。まず、問題は画像のデータ型にあると思いました。それらを32と64に変更しましたが、それでも同じ結果になります。誰かが私に何が間違っている可能性があるか教えてもらえますか?

http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html#dft 上記のこの関数は、黒い画像を表示します。GRAYSCALEで入力しました。

void convol_fft(const Mat& A,const vector<vector<float>>& kernel2d,Mat& result)
{

    Mat B = Mat(3,3,CV_64F);
    for (int row = 0; row < kernel2d.size(); row++)
        for (int col = 0; col < kernel2d[row].size(); col++){
            B.at<uchar>(row,col) = (uchar)kernel2d[row][col];
        }

    int dft_M = getOptimalDFTSize( A.rows+B.rows-1 );
    int dft_N = getOptimalDFTSize( A.cols+B.cols-1 );
    Mat dft_A = Mat::zeros(dft_M, dft_N, CV_64F);
    Mat dft_B = Mat::zeros(dft_M, dft_N, CV_64F);

    Mat dft_A_part = dft_A(Rect(0, 0, A.cols,A.rows));
    A.convertTo(dft_A_part, dft_A_part.type(), 1, -mean(A)[0]);
    Mat dft_B_part = dft_B(Rect(0, 0, B.cols,B.rows));
    B.convertTo(dft_B_part, dft_B_part.type(), 1, -mean(B)[0]);

    dft(dft_A, dft_A, 0, A.rows);
    dft(dft_B, dft_B, 0, B.rows);

    // set the last parameter to false to compute convolution instead of correlation
    mulSpectrums( dft_A, dft_B, dft_A, 0, false );
    idft(dft_A, dft_A, DFT_SCALE, A.rows + B.rows - 1 );

    result = dft_A(Rect(0, 0, A.cols + B.cols - 1, A.rows + B.rows - 1));
    normalize(result, result, 0, 1, NORM_MINMAX, result.type());
    pow(result, 3., result);

  //  B ^= Scalar::all(255);

}
4

2 に答える 2

1

openCV に基づく次のコードphaseCorrelateRes()は、2 次元で相関を行います。

static void fftShift(InputOutputArray _out)
{
    Mat out = _out.getMat();

    if(out.rows == 1 && out.cols == 1)
    {
        // trivially shifted.
        return;
    }

    vector<Mat> planes;
    split(out, planes);

    int xMid = out.cols >> 1;
    int yMid = out.rows >> 1;

    bool is_1d = xMid == 0 || yMid == 0;

    if(is_1d)
    {
        xMid = xMid + yMid;

        for(size_t i = 0; i < planes.size(); i++)
        {
            Mat tmp;
            Mat half0(planes[i], Rect(0, 0, xMid, 1));
            Mat half1(planes[i], Rect(xMid, 0, xMid, 1));

            half0.copyTo(tmp);
            half1.copyTo(half0);
            tmp.copyTo(half1);
        }
    }
    else
    {
        for(size_t i = 0; i < planes.size(); i++)
        {
            // perform quadrant swaps...
            Mat tmp;
            Mat q0(planes[i], Rect(0,    0,    xMid, yMid));
            Mat q1(planes[i], Rect(xMid, 0,    xMid, yMid));
            Mat q2(planes[i], Rect(0,    yMid, xMid, yMid));
            Mat q3(planes[i], Rect(xMid, yMid, xMid, yMid));

            q0.copyTo(tmp);
            q3.copyTo(q0);
            tmp.copyTo(q3);

            q1.copyTo(tmp);
            q2.copyTo(q1);
            tmp.copyTo(q2);
        }
    }

    merge(planes, out);
}

void Correlate2d(
    const cv::Mat& src1, 
    const cv::Mat& src2, 
    cv::Mat& dst,
    double* response)
{

    CV_Assert( src1.type() == src2.type());
    CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 );
    CV_Assert( src1.size == src2.size);

    int M = getOptimalDFTSize(src1.rows);
    int N = getOptimalDFTSize(src1.cols);

    Mat padded1, padded2, paddedWin;

    if(M != src1.rows || N != src1.cols)
    {
        copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
        copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));
    }
    else
    {
        padded1 = src1;
        padded2 = src2;
    }

    Mat FFT1, FFT2, P, Pm, C;

    // correlation equation
    // Reference: http://en.wikipedia.org/wiki/Phase_correlation
    dft(padded1, FFT1, DFT_REAL_OUTPUT);
    dft(padded2, FFT2, DFT_REAL_OUTPUT);

    mulSpectrums(FFT1, FFT2, dst, 0, true);
    idft(dst, dst, DFT_SCALE); // gives us the correlation result...
    fftShift(dst); // shift the energy to the center of the frame.

    // locate the highest peak
    Point peakLoc;
    minMaxLoc(dst, NULL, NULL, NULL, &peakLoc);

    // max response is scaled
    if( response )
        *response = dst.at<float>(peakLoc);
}

コードは \opencv\sources\modules\imgproc\src\phasecorr.cpp にあります。

コードを畳み込みに変更するには、次の行を変更するだけです。

mulSpectrums(FFT1, FFT2, dst, 0, true);

mulSpectrums(FFT1, FFT2, dst, 0, false);

これは、matlab で行うのと同じです。

dst = fftshift(ifft2(fft2(src1).*conj(fft2(src2))))
于 2015-03-09T12:51:07.497 に答える
0

OpenCVについてはよくわかりません...しかし、これは疑わしいようです。

for (int row = 0; row < kernel2d.size(); row++)
    for (int col = 0; col < kernel2d[row].size(); col++){
        B.at<uchar>(row,col) = (uchar)kernel2d[row][col];
 }

B カーネルをいっぱいにする場合、行は kernel2d[col].size() になります。B カーネルをオーバーランしているようです。kernel2d.size() の値は?

値を直接ロードしないのはなぜですか? すべての関数呼び出しを保存します。

ガウス カーネルの場合、{1,2,1,2,3,2,1,2,1} のようになります。

于 2012-12-20T13:58:14.680 に答える