では、問題は次のとおりです。
ランダムに生成された地形でゲームを作っています。地形は一度生成され、ディスク/SD カードに保存されます。これは非常にうまく機能します:)
これを行うには、SplashScreenActivity を実行します。SplashScreenActivity は、起動方法に応じて、最初のスプラッシュ スクリーン、ワールドの作成、またはワールドの読み込みを実行します。実際の手続き型生成は、Stefan Gustavson によって作成され、Peter Eastman によって最適化されたクラスを使用して 4D Simplex Noise を使用して行われます (そして、変数を引き出して静的にすることで、自分で少なくとも 50% 最適化および高速化しました ... しかし、問題は私がこれらの変更の前に起こったことを説明しようとしています)。
基本的に、ノイズ機能を使用してタイルをノイズで埋めます。私のワールド作成ループでは、すべてのタイルをループし、タイルごとにすべてのピクセルを実行し、クラスの SimplexNoise4D.noise(x,y,z,w) 関数を呼び出して各ピクセルを埋めます (送信する予定ですxyzw-per-pixel コレクションをクラスに追加して、その上でメソッドを実行して高速にアクセスできるようにします)。
とにかく、これはすべてうまくいきます。しかし、ゲーム アクティビティを終了してメイン メニューに戻ると、ワールドの作成を再度実行しようとすると、SimplexNoise クラス メソッド (.noise メソッドとそれが使用する内部メソッド) へのアクセスが遅くなります!!! 呼び出しを通常の速度で実行する唯一の方法は、アプリケーション全体を終了し (タスク マネージャーを使用して強制終了)、アプリケーションを再起動することです。次に、初めて実行したとき、タイルの作成は本来の速さです。デバッグ/メソッド プロフィル ect を使用すると、.noise メソッドの呼び出しとドット メソッドの呼び出しに、2 回目に全世界の作成を実行しようとすると、膨大な時間がかかるようです。
したがって、繰り返しますが、最初にループして SimplexNoise.noise(xyzw) を使用してアクセスすると、正常に動作します。ただし、すべてのタイルのすべてのピクセルに対して 2 回目にアクセスすると (インゲーム後)、クラスへのすべてのメソッド呼び出しに FOREVER がかかります。
なぜこれが起こるのか、どうすればそれを止めることができるのか誰か知っていますか?
-編集- 物事を明確にするために、アプリケーションは次のように動作します: mainmenuActivity -> chooseWorldSizeActivity -> SimplexNoise.noise(xywz) への多くの呼び出しでワールドを作成するスプラッシュスクリーン -> スプラッシュスクリーンを終了 -> ゲームアクティビティを開始します。
これは問題なく高速に動作します。ただし、gameActivity (メイン メニューに移動) を終了すると、->selectWordlSizeActivity->splashscreenActivity になり、SimplexNoise.noise(xyzw) の呼び出しが完了するまでに時間がかかります。(atskkiller を使用して) アプリケーション全体を停止すると、ワールドの作成に通常の時間がかかります。そして、私は本当に理由を見つけることができません!-/編集-
呼び出しループ (ASyncTask の doInBackground() 内) は次のとおりです。
for(loop over rows of tiles)
for(loop over column tiles)
for(each pixel)
create x, y, z, w;
SimplexNoise.noise(xyzw);
シンプレックス ノイズ クラスは次のようになります。
`
public final class SimplexNoise4D { // Simplex noise in 2D, 3D and 4D
private static final Grad grad3[] = {new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)};
private static final Grad grad4[]= {new Grad(0,1,1,1),new Grad(0,1,1,-1),new Grad(0,1,-1,1),new Grad(0,1,-1,-1),
new Grad(0,-1,1,1),new Grad(0,-1,1,-1),new Grad(0,-1,-1,1),new Grad(0,-1,-1,-1),
new Grad(1,0,1,1),new Grad(1,0,1,-1),new Grad(1,0,-1,1),new Grad(1,0,-1,-1),
new Grad(-1,0,1,1),new Grad(-1,0,1,-1),new Grad(-1,0,-1,1),new Grad(-1,0,-1,-1),
new Grad(1,1,0,1),new Grad(1,1,0,-1),new Grad(1,-1,0,1),new Grad(1,-1,0,-1),
new Grad(-1,1,0,1),new Grad(-1,1,0,-1),new Grad(-1,-1,0,1),new Grad(-1,-1,0,-1),
new Grad(1,1,1,0),new Grad(1,1,-1,0),new Grad(1,-1,1,0),new Grad(1,-1,-1,0),
new Grad(-1,1,1,0),new Grad(-1,1,-1,0),new Grad(-1,-1,1,0),new Grad(-1,-1,-1,0)};
private static final short p[] = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};
// To remove the need for index wrapping, double the permutation table length
private static short perm[] = new short[512];
private static short permMod12[] = new short[512];
static {
for(int i=0; i<512; i++)
{
perm[i]=p[i & 255];
permMod12[i] = (short)(perm[i] % 12);
}
}
// Skewing and unskewing factors for 2, 3, and 4 dimensions
private static final double F2 = 0.5*(Math.sqrt(3.0)-1.0);
private static final double G2 = (3.0-Math.sqrt(3.0))/6.0;
private static final double F3 = 1.0/3.0;
private static final double G3 = 1.0/6.0;
private static final double F4 = (Math.sqrt(5.0)-1.0)/4.0;
private static final double G4 = (5.0-Math.sqrt(5.0))/20.0;
// This method is a *lot* faster than using (int)Math.floor(x)
private static int fastfloor(double x) {
int xi = (int)x;
return x<xi ? xi-1 : xi;
}
private static double dot(Grad g, double x, double y) {
return g.x*x + g.y*y; }
private static double dot(Grad g, double x, double y, double z) {
return g.x*x + g.y*y + g.z*z; }
private static double dot(Grad g, double x, double y, double z, double w) {
return g.x*x + g.y*y + g.z*z + g.w*w; }
private static double n0, n1, n2, n3, n4; // Noise contributions from the five corners
private static double s;// Factor for 4D skewing
private static int i;
private static int j;
private static int k;
private static int l;
private static double t; // Factor for 4D unskewing
private static double X0; // Unskew the cell origin back to (x,y,z,w) space
private static double Y0;
private static double Z0;
private static double W0;
private static double x0; // The x,y,z,w distances from the cell origin
private static double y0;
private static double z0;
private static double w0;
private static int rankx;
private static int ranky;
private static int rankz;
private static int rankw;
private static int i1, j1, k1, l1; // The integer offsets for the second simplex corner
private static int i2, j2, k2, l2; // The integer offsets for the third simplex corner
private static int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
private static double x1; // Offsets for second corner in (x,y,z,w) coords
private static double y1;
private static double z1;
private static double w1;
private static double x2; // Offsets for third corner in (x,y,z,w) coords
private static double y2;
private static double z2;
private static double w2;
private static double x3; // Offsets for fourth corner in (x,y,z,w) coords
private static double y3;
private static double z3;
private static double w3;
private static double x4; // Offsets for last corner in (x,y,z,w) coords
private static double y4;
private static double z4;
private static double w4;
// Work out the hashed gradient indices of the five simplex corners
private static int ii;
private static int jj;
private static int kk;
private static int ll;
private static int gi0;
private static int gi1;
private static int gi2;
private static int gi3;
private static int gi4;
private static double t0;
private static double t1;
private static double t2;
private static double t3;
private static double t4;
// 4D simplex noise, better simplex rank ordering method 2012-03-09
public static double noise(double x, double y, double z, double w) {
////double n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
////double s = (x + y + z + w) * F4; // Factor for 4D skewing
s = (x + y + z + w) * F4; // Factor for 4D skewing
/*int i = fastfloor(x + s);
int j = fastfloor(y + s);
int k = fastfloor(z + s);
int l = fastfloor(w + s);
double t = (i + j + k + l) * G4; // Factor for 4D unskewing
double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
double Y0 = j - t;
double Z0 = k - t;
double W0 = l - t;
double x0 = x - X0; // The x,y,z,w distances from the cell origin
double y0 = y - Y0;
double z0 = z - Z0;
double w0 = w - W0;*/
i = fastfloor(x + s);
j = fastfloor(y + s);
k = fastfloor(z + s);
l = fastfloor(w + s);
t = (i + j + k + l) * G4; // Factor for 4D unskewing
X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
Y0 = j - t;
Z0 = k - t;
W0 = l - t;
x0 = x - X0; // The x,y,z,w distances from the cell origin
y0 = y - Y0;
z0 = z - Z0;
w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
/*int rankx = 0;
int ranky = 0;
int rankz = 0;
int rankw = 0;
if(x0 > y0) rankx++; else ranky++;
if(x0 > z0) rankx++; else rankz++;
if(x0 > w0) rankx++; else rankw++;
if(y0 > z0) ranky++; else rankz++;
if(y0 > w0) ranky++; else rankw++;
if(z0 > w0) rankz++; else rankw++;
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner*/
rankx = 0;
ranky = 0;
rankz = 0;
rankw = 0;
if(x0 > y0) rankx++; else ranky++;
if(x0 > z0) rankx++; else rankz++;
if(x0 > w0) rankx++; else rankw++;
if(y0 > z0) ranky++; else rankz++;
if(y0 > w0) ranky++; else rankw++;
if(z0 > w0) rankz++; else rankw++;
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0;
// Rank 2 denotes the second largest coordinate.
i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0;
// Rank 1 denotes the second smallest coordinate.
i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
/*double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
double y1 = y0 - j1 + G4;
double z1 = z0 - k1 + G4;
double w1 = w0 - l1 + G4;
double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
double y2 = y0 - j2 + 2.0*G4;
double z2 = z0 - k2 + 2.0*G4;
double w2 = w0 - l2 + 2.0*G4;
double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
double y3 = y0 - j3 + 3.0*G4;
double z3 = z0 - k3 + 3.0*G4;
double w3 = w0 - l3 + 3.0*G4;
double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
double y4 = y0 - 1.0 + 4.0*G4;
double z4 = z0 - 1.0 + 4.0*G4;
double w4 = w0 - 1.0 + 4.0*G4;
// Work out the hashed gradient indices of the five simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int ll = l & 255;
int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;*/
x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
y1 = y0 - j1 + G4;
z1 = z0 - k1 + G4;
w1 = w0 - l1 + G4;
x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
y2 = y0 - j2 + 2.0*G4;
z2 = z0 - k2 + 2.0*G4;
w2 = w0 - l2 + 2.0*G4;
x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
y3 = y0 - j3 + 3.0*G4;
z3 = z0 - k3 + 3.0*G4;
w3 = w0 - l3 + 3.0*G4;
x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
y4 = y0 - 1.0 + 4.0*G4;
z4 = z0 - 1.0 + 4.0*G4;
w4 = w0 - 1.0 + 4.0*G4;
// Work out the hashed gradient indices of the five simplex corners
ii = i & 255;
jj = j & 255;
kk = k & 255;
ll = l & 255;
gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
// Calculate the contribution from the five corners
/*double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
}
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
}
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
}
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
}
double t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
if(t4<0) n4 = 0.0;
else {
t4 *= t4;
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
}*/
t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
}
t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
}
t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
}
t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
}
t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
if(t4<0) n4 = 0.0;
else {
t4 *= t4;
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}
// Inner class to speed up gradient computations
// (array access is a lot slower than member access)
private static class Grad
{
double x, y, z, w;
Grad(double x, double y, double z)
{
this.x = x;
this.y = y;
this.z = z;
}
Grad(double x, double y, double z, double w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
}
}
`