13

1 週間前、私はこれを手動で行っていたでしょう: グループごとにデータフレームを新しいデータフレームにサブセット化します。各データフレームについて、各変数の平均を計算してから、rbind を実行します。非常に不格好...

splitとについて学んだ今plyr、これらのツールを使用するより簡単な方法があるに違いないと思います。私が間違っていることを証明しないでください。

test_data <- data.frame(cbind(
var0 = rnorm(100),
var1 = rnorm(100,1),
var2 = rnorm(100,2),
var3 = rnorm(100,3),
var4 = rnorm(100,4),
group = sample(letters[1:10],100,replace=T),
year = sample(c(2007,2009),100, replace=T)))

test_data$var1 <- as.numeric(as.character(test_data$var1))
test_data$var2 <- as.numeric(as.character(test_data$var2))
test_data$var3 <- as.numeric(as.character(test_data$var3))
test_data$var4 <- as.numeric(as.character(test_data$var4))

私は両方をいじっていますddplyが、私が望むものを作り出すことができません - つまり、各グループに対してこのようなテーブル

group a |2007|2009|
________|____|____|
var1    | xx | xx |
var2    | xx | xx |
etc.    | etc| ect|

たぶんd_ply、いくつかのodfweave出力はうまくいくでしょう。入力は非常に高く評価されています。

ps data.frame が rnorm を data.frame の要素に変換することに気付きましたか? これを回避するにはどうすればよいですか - I(rnorm(100) は機能しないため、上記のように数値に変換する必要があります

4

6 に答える 6

11

結果に必要な形式を考えると、reshapeパッケージはplyrよりも効率的です。

test_data <- data.frame(
var0 = rnorm(100),
var1 = rnorm(100,1),
var2 = rnorm(100,2),
var3 = rnorm(100,3),
var4 = rnorm(100,4),
group = sample(letters[1:10],100,replace=T),
year = sample(c(2007,2009),100, replace=T))

library(reshape)
Molten <- melt(test_data, id.vars = c("group", "year"))
cast(group + variable ~ year, data = Molten, fun = mean)

結果は次のようになります

   group variable         2007         2009
1      a     var0  0.003767891  0.340989068
2      a     var1  2.009026385  1.162786943
3      a     var2  1.861061882  2.676524736
4      a     var3  2.998011426  3.311250399
5      a     var4  3.979255971  4.165715967
6      b     var0 -0.112883844 -0.179762343
7      b     var1  1.342447279  1.199554144
8      b     var2  2.486088196  1.767431740
9      b     var3  3.261451449  2.934903824
10     b     var4  3.489147597  3.076779626
11     c     var0  0.493591055 -0.113469315
12     c     var1  0.157424796 -0.186590644
13     c     var2  2.366594176  2.458204041
14     c     var3  3.485808031  2.817153628
15     c     var4  3.681576886  3.057915666
16     d     var0  0.360188789  1.205875725
17     d     var1  1.271541181  0.898973536
18     d     var2  1.824468264  1.944708165
19     d     var3  2.323315162  3.550719308
20     d     var4  3.852223640  4.647498956
21     e     var0 -0.556751465  0.273865769
22     e     var1  1.173899189  0.719520372
23     e     var2  1.935402724  2.046313047
24     e     var3  3.318669590  2.871462470
25     e     var4  4.374478734  4.522511874
26     f     var0 -0.258956555 -0.007729091
27     f     var1  1.424479454  1.175242755
28     f     var2  1.797948551  2.411030282
29     f     var3  3.083169793  3.324584667
30     f     var4  4.160641429  3.546527820
31     g     var0  0.189038036 -0.683028110
32     g     var1  0.429915866  0.827761101
33     g     var2  1.839982321  1.513104866
34     g     var3  3.106414330  2.755975622
35     g     var4  4.599340239  3.691478466
36     h     var0  0.015557352 -0.707257185
37     h     var1  0.933199148  1.037655156
38     h     var2  1.927442457  2.521369108
39     h     var3  3.246734239  3.703213646
40     h     var4  4.242387776  4.407960355
41     i     var0  0.885226638 -0.288221276
42     i     var1  1.216012653  1.502514588
43     i     var2  2.302815441  1.905731471
44     i     var3  2.026631277  2.836508446
45     i     var4  4.800676814  4.772964668
46     j     var0 -0.435661855  0.192703997
47     j     var1  0.836814185  0.394505861
48     j     var2  1.663523873  2.377640369
49     j     var3  3.489536343  3.457597835
50     j     var4  4.146020948  4.281599816
于 2009-09-10T21:20:28.483 に答える
11

でこれを行うことができますby()。最初にいくつかのデータを設定します。

R> set.seed(42)
R> testdf <- data.frame(var1=rnorm(100), var2=rnorm(100,2), var3=rnorm(100,3),  
                        group=as.factor(sample(letters[1:10],100,replace=T)),  
                        year=as.factor(sample(c(2007,2009),100,replace=T)))
R> summary(testdf)
      var1              var2              var3          group      year   
 Min.   :-2.9931   Min.   :-0.0247   Min.   :0.30   e      :15   2007:50  
 1st Qu.:-0.6167   1st Qu.: 1.4085   1st Qu.:2.29   c      :14   2009:50  
 Median : 0.0898   Median : 1.9307   Median :2.98   f      :12            
 Mean   : 0.0325   Mean   : 1.9125   Mean   :2.99   h      :12            
 3rd Qu.: 0.6616   3rd Qu.: 2.4618   3rd Qu.:3.65   d      :11            
 Max.   : 2.2866   Max.   : 4.7019   Max.   :5.46   b      :10            
                                                    (Other):26  

使用by():

R> by(testdf[,1:3], testdf$year, mean)
testdf$year: 2007
   var1    var2    var3 
0.04681 1.77638 3.00122 
--------------------------------------------------------------------- 
testdf$year: 2009
   var1    var2    var3 
0.01822 2.04865 2.97805 
R> by(testdf[,1:3], list(testdf$group, testdf$year), mean)  
## longer answer by group and year suppressed

テーブル用にこれを再フォーマットする必要がありますが、1 行で回答の要点が得られます。

編集:さらに処理を行うことができます

R> foo <- by(testdf[,1:3], list(testdf$group, testdf$year), mean)  
R> do.call(rbind, foo)
          var1   var2  var3
 [1,]  0.62352 0.2549 3.157
 [2,]  0.08867 1.8313 3.607
 [3,] -0.69093 2.5431 3.094
 [4,]  0.02792 2.8068 3.181
 [5,] -0.26423 1.3269 2.781
 [6,]  0.07119 1.9453 3.284
 [7,] -0.10438 2.1181 3.783
 [8,]  0.21147 1.6345 2.470
 [9,]  1.17986 1.6518 2.362
[10,] -0.42708 1.5683 3.144
[11,] -0.82681 1.9528 2.740
[12,] -0.27191 1.8333 3.090
[13,]  0.15854 2.2830 2.949
[14,]  0.16438 2.2455 3.100
[15,]  0.07489 2.1798 2.451
[16,] -0.03479 1.6800 3.099
[17,]  0.48082 1.8883 2.569
[18,]  0.32381 2.4015 3.332
[19,] -0.47319 1.5016 2.903
[20,]  0.11743 2.2645 3.452
R> do.call(rbind, dimnames(foo))
     [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]   [,10] 
[1,] "a"    "b"    "c"    "d"    "e"    "f"    "g"    "h"    "i"    "j"   
[2,] "2007" "2009" "2007" "2009" "2007" "2009" "2007" "2009" "2007" "2009"

あなたはもう少し遊ぶことができdimnamesます:

R> expand.grid(dimnames(foo))
   Var1 Var2
1     a 2007
2     b 2007
3     c 2007
4     d 2007
5     e 2007
6     f 2007
7     g 2007
8     h 2007
9     i 2007
10    j 2007
11    a 2009
12    b 2009
13    c 2009
14    d 2009
15    e 2009
16    f 2009
17    g 2009
18    h 2009
19    i 2009
20    j 2009
R> 

編集:data.frameこれで、ベース R のみを使用して外部パッケージに頼ることなく、結果の を作成できます。

R> data.frame(cbind(expand.grid(dimnames(foo)), do.call(rbind, foo)))
   Var1 Var2     var1   var2  var3
1     a 2007  0.62352 0.2549 3.157
2     b 2007  0.08867 1.8313 3.607
3     c 2007 -0.69093 2.5431 3.094
4     d 2007  0.02792 2.8068 3.181
5     e 2007 -0.26423 1.3269 2.781
6     f 2007  0.07119 1.9453 3.284
7     g 2007 -0.10438 2.1181 3.783
8     h 2007  0.21147 1.6345 2.470
9     i 2007  1.17986 1.6518 2.362
10    j 2007 -0.42708 1.5683 3.144
11    a 2009 -0.82681 1.9528 2.740
12    b 2009 -0.27191 1.8333 3.090
13    c 2009  0.15854 2.2830 2.949
14    d 2009  0.16438 2.2455 3.100
15    e 2009  0.07489 2.1798 2.451
16    f 2009 -0.03479 1.6800 3.099
17    g 2009  0.48082 1.8883 2.569
18    h 2009  0.32381 2.4015 3.332
19    i 2009 -0.47319 1.5016 2.903
20    j 2009  0.11743 2.2645 3.452
R> 
于 2009-09-10T20:25:38.097 に答える
5

基本的な R 関数で実行できます。

n <- 100
test_data <- data.frame(
    var0 = rnorm(n),
    var1 = rnorm(n,1),
    var2 = rnorm(n,2),
    var3 = rnorm(n,3),
    var4 = rnorm(n,4),
    group = sample(letters[1:10],n,replace=TRUE),
    year = sample(c(2007,2009),n, replace=TRUE)
)

tapply(
    seq_len(nrow(test_data)),
    test_data$group,
    function(ind) sapply(
        c("var0","var1","var2","var3","var4"),
        function(x_name) tapply(
            test_data[[x_name]][ind],
            test_data$year[ind],
            mean
        )
    )
)

説明:

  • ヒント: ランダム データを生成する場合、観測数を定義するのに役立ちます。サンプルサイズの変更は簡単です。
  • 最初に行インデックス 1:nrow(test_data) をタップしてグループごとに分割し、
  • 次に、グループごとに変数に適用します
  • 固定グループと変数の場合、年ごとの変数の平均を単純にタップして返します。

R 2.9.2 の結果は次のとおりです。

$a
 var0.2007  var1.2007  var2.2007  var3.2007  var4.2007 
-0.3123034  0.8759787  1.9832617  2.7063034  4.1322758 

$b
            var0      var1     var2     var3     var4
2007  0.81366885 0.4189896 2.331256 3.073276 4.164639
2009 -0.08916257 1.5442126 3.008014 3.215019 4.398279

$c
          var0      var1     var2     var3     var4
2007 0.4232098 1.3657369 1.386627 2.808511 3.878809
2009 0.3245751 0.6672073 1.797886 1.752568 3.632318

$d
           var0      var1     var2     var3     var4
2007 -0.1335138 0.5925237 2.303543 3.293281 3.234386
2009  0.9547751 2.2111581 2.678878 2.845234 3.300512

$e
           var0      var1     var2     var3     var4
2007 -0.5958653 1.3535658 1.886918 3.036121 4.120889
2009  0.1372080 0.7215648 2.298064 3.186617 3.551147

$f
           var0      var1     var2     var3     var4
2007 -0.3401813 0.7883120 1.949329 2.811438 4.194481
2009  0.3012627 0.2702647 3.332480 3.480494 2.963951

$g
         var0       var1      var2     var3     var4
2007 1.225245 -0.3289711 0.7599302 2.903581 4.200023
2009 0.273858  0.2445733 1.7690299 2.620026 4.182050

$h
           var0     var1     var2     var3     var4
2007 -1.0126650 1.554403 2.220979 3.713874 3.924151
2009 -0.6187407 1.504297 1.321930 2.796882 4.179695

$i
            var0     var1     var2     var3     var4
2007  0.01697314 1.318965 1.794635 2.709925 2.899440
2009 -0.75790995 1.033483 2.363052 2.422679 3.863526

$j
           var0      var1     var2     var3     var4
2007 -0.7440600 1.6466291 2.020379 3.242770 3.727347
2009 -0.2842126 0.5450029 1.669964 2.747455 4.179531

私のランダム データでは、「a」グループに問題があります。2007 年のケースのみが存在していました。年が因子 (レベル 2007 および 2009) である場合、結果はより良く見える可能性があります (各年に 2 つの行がありますが、おそらく NA があります)。

結果はリストなので、lapply を使用して、たとえば次のようにできます。latex テーブル、html テーブル、画面転置での印刷などに変換します。

于 2009-09-10T23:02:21.247 に答える
5

まず第一に、cbind を使用する必要はありません。そのため、すべてが要因です。これは機能します:

test_data <- data.frame(
var0 = rnorm(100),
var1 = rnorm(100,1),
var2 = rnorm(100,2),
var3 = rnorm(100,3),
var4 = rnorm(100,4),
group = sample(letters[1:10],100,replace=T),
year = sample(c(2007,2009),100, replace=T))

次に、ベスト プラクティスは「.」を使用することです。変数名の「_」の代わりに。Google スタイル ガイドを参照してください(たとえば)。

最後に、Rigroup パッケージを使用できます。とても速いです。igroupMeans() 関数を apply と組み合わせて、 index を設定しますi=as.factor(paste(test_data$group,test_data$year,sep=""))。これについては後ほど例を挙げてみたいと思います。

2017年6月9日編集

Rigroup パッケージが CRAN から削除されました。これを見る

于 2009-09-10T20:28:14.143 に答える
3

First do a simple aggregate to get it summarized.

df <- aggregate(cbind(var0, var1, var2, var3, var4) ~ year + group, test_data, mean)

That makes a data.frame like this...

   year group     var0      var1     var2     var3     var4
1  2007     a 42.25000 0.2031277 2.145394 2.801812 3.571999
2  2009     a 30.50000 1.2033653 1.475158 3.618023 4.127601
3  2007     b 52.60000 1.4564604 2.224850 3.053322 4.339109
...

That, by itself, is pretty close to what you wanted. You could just break it up by group now.

l <- split(df, df$group)

OK, so that's not quite it but we can refine the output if you really want to.

lapply(l, function(x) {d <- t(x[,3:7]); colnames(d) <- x[,2]; d})

$a
           2007      2009
var0 42.2500000 30.500000
var1  0.2031277  1.203365
var2  2.1453939  1.475158
...

That doesn't have all your table formatting but it's organized exactly as you describe and is darn close. This last step you could pretty up how you like.

This is the only answer here that matches the requested organization, and it's the fastest way to do it in R. BTW, I wouldn't bother doing that last step and just stick with the very first output from the aggregate... or maybe the split.

于 2011-10-09T21:48:57.793 に答える