私は、予測可能な分岐を含むループとランダムな分岐を含むループを実行する時間を測定することにより、分岐予測を十分に理解しようとしています。
そこで、0 と 1 の大きな配列をさまざまな順序 (つまり、すべて 0、0-1 の繰り返し、すべて rand) に配置し、現在のインデックスが 0 か 1 かによって分岐する配列を反復処理するプログラムを作成しました。・仕事の無駄。
推測しにくい配列は実行に時間がかかると予想しました。これは、分岐予測子がより頻繁に間違って推測するためであり、2 セットの配列での実行間の時間差は、時間に関係なく同じままであると予想していました。仕事を無駄にする。
ただし、時間を浪費する作業の量が増えるにつれて、アレイ間の実行時間の差が大きくなりました。
(X 軸は時間を浪費する作業の量、Y 軸は実行時間)
誰もこの行動を理解していますか?次のコードで実行しているコードを確認できます。
#include <stdlib.h>
#include <time.h>
#include <chrono>
#include <stdio.h>
#include <iostream>
#include <vector>
using namespace std;
static const int s_iArrayLen = 999999;
static const int s_iMaxPipelineLen = 60;
static const int s_iNumTrials = 10;
int doWorkAndReturnMicrosecondsElapsed(int* vals, int pipelineLen){
int* zeroNums = new int[pipelineLen];
int* oneNums = new int[pipelineLen];
for(int i = 0; i < pipelineLen; ++i)
zeroNums[i] = oneNums[i] = 0;
chrono::time_point<chrono::system_clock> start, end;
start = chrono::system_clock::now();
for(int i = 0; i < s_iArrayLen; ++i){
if(vals[i] == 0){
for(int i = 0; i < pipelineLen; ++i)
++zeroNums[i];
}
else{
for(int i = 0; i < pipelineLen; ++i)
++oneNums[i];
}
}
end = chrono::system_clock::now();
int elapsedMicroseconds = (int)chrono::duration_cast<chrono::microseconds>(end-start).count();
//This should never fire, it just exists to guarantee the compiler doesn't compile out our zeroNums/oneNums
for(int i = 0; i < pipelineLen - 1; ++i)
if(zeroNums[i] != zeroNums[i+1] || oneNums[i] != oneNums[i+1])
return -1;
delete[] zeroNums;
delete[] oneNums;
return elapsedMicroseconds;
}
struct TestMethod{
string name;
void (*func)(int, int&);
int* results;
TestMethod(string _name, void (*_func)(int, int&)) { name = _name; func = _func; results = new int[s_iMaxPipelineLen]; }
};
int main(){
srand( (unsigned int)time(nullptr) );
vector<TestMethod> testMethods;
testMethods.push_back(TestMethod("all-zero", [](int index, int& out) { out = 0; } ));
testMethods.push_back(TestMethod("repeat-0-1", [](int index, int& out) { out = index % 2; } ));
testMethods.push_back(TestMethod("repeat-0-0-0-1", [](int index, int& out) { out = (index % 4 == 0) ? 0 : 1; } ));
testMethods.push_back(TestMethod("rand", [](int index, int& out) { out = rand() % 2; } ));
int* vals = new int[s_iArrayLen];
for(int currentPipelineLen = 0; currentPipelineLen < s_iMaxPipelineLen; ++currentPipelineLen){
for(int currentMethod = 0; currentMethod < (int)testMethods.size(); ++currentMethod){
int resultsSum = 0;
for(int trialNum = 0; trialNum < s_iNumTrials; ++trialNum){
//Generate a new array...
for(int i = 0; i < s_iArrayLen; ++i)
testMethods[currentMethod].func(i, vals[i]);
//And record how long it takes
resultsSum += doWorkAndReturnMicrosecondsElapsed(vals, currentPipelineLen);
}
testMethods[currentMethod].results[currentPipelineLen] = (resultsSum / s_iNumTrials);
}
}
cout << "\t";
for(int i = 0; i < s_iMaxPipelineLen; ++i){
cout << i << "\t";
}
cout << "\n";
for (int i = 0; i < (int)testMethods.size(); ++i){
cout << testMethods[i].name.c_str() << "\t";
for(int j = 0; j < s_iMaxPipelineLen; ++j){
cout << testMethods[i].results[j] << "\t";
}
cout << "\n";
}
int end;
cin >> end;
delete[] vals;
}
Pastebin リンク: http://pastebin.com/F0JAu3uw