この問題は、右または下に移動するだけで、ポイントA(常に左上)からポイントB(常に右下)までのNxMグリッド内の最短経路を見つける必要がある場合に発生します。簡単そうですね。ここに問題があります。現在座っているタイルに表示されている数字しか移動できません。説明させてください:
2 5 1 2
9 2 5 3
3 3 1 1
4 8 2 7
この4x4グリッドでは、最短経路は3つのステップをたどり、左上から2ノードから3に、そこから3ノードを右に1に、次に1ノードをゴールまで歩きます。
[2] 5 1 2
9 2 5 3
[3] 3 1 [1]
4 8 2 [7]
最短経路でない場合は、次のルートを使用することもできます。
[2] 5 [1][2]
9 2 5 3
3 3 1 [1]
4 8 2 [7]
残念ながら、それはなんと4つのステップを踏むことになり、したがって、私の興味はありません。それは物事を少しクリアする必要があります。次に入力について。
ユーザーは次のようにグリッドを入力します。
5 4 // height and width
2 5 2 2 //
2 2 7 3 // the
3 1 2 2 // grid
4 8 2 7 //
1 1 1 1 //
宿題
私はこれを熟考しましたが、入力されたグリッドを単純化して重み付けされていない(または負の重みの)グラフにし、その上でdijkstraやA *(またはそれらの線に沿ったもの)のようなものを実行するよりも良い解決策を見つけることはできません。さて...これは私が迷子になる部分です。私は最初に何かを実装しました(またはすぐにスラッシュに投げるために何かを実装しました)。dijkstraやA*などとは何の関係もありません。単純な幅優先探索。
コード
#include <iostream>
#include <vector>
struct Point;
typedef std::vector<int> vector_1D;
typedef std::vector< std::vector<int> > vector_2D;
typedef std::vector<Point> vector_point;
struct Point {
int y, x;
vector_point Parents;
Point(int yPos = 0, int xPos = 0) : y(yPos), x(xPos) { }
void operator << (const Point& point) { this->Parents.push_back(point); }
};
struct grid_t {
int height, width;
vector_2D tiles;
grid_t() // construct the grid
{
std::cin >> height >> width; // input grid height & width
tiles.resize(height, vector_1D(width, 0)); // initialize grid tiles
for(int i = 0; i < height; i++) //
for(int j = 0; j < width; j++) // input each tile one at a time
std::cin >> tiles[i][j]; // by looping through the grid
}
};
void go_find_it(grid_t &grid)
{
vector_point openList, closedList;
Point previous_node; // the point is initialized as (y = 0, x = 0) if not told otherwise
openList.push_back(previous_node); // (0, 0) is the first point we want to consult, of course
do
{
closedList.push_back(openList.back()); // the tile we are at is good and checked. mark it so.
openList.pop_back(); // we don't need this guy no more
int y = closedList.back().y; // now we'll actually
int x = closedList.back().x; // move to the new point
int jump = grid.tiles[y][x]; // 'jump' is the number shown on the tile we're standing on.
if(y + jump < grid.height) // if we're not going out of bounds
{
openList.push_back(Point(y+jump, x)); //
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
if(x + jump < grid.width) // if we're not going out of bounds
{
openList.push_back(Point(y, x+jump)); // push in the new promising point
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
}
while(openList.size() > 0); // when there are no new tiles to check, break out and return
}
int main()
{
grid_t grid; // initialize grid
go_find_it(grid); // basically a brute-force get-it-all-algorithm
return 0;
}
また、実行時間は1秒を超えることはできず、グリッドの最大の高さと幅は1000です。すべてのタイルも1から1000までの数字です。
ありがとう。
編集されたコード
#include <iostream>
#include <vector>
struct Point;
typedef std::vector<int> vector_1D;
typedef std::vector< std::vector<int> > vector_2D;
typedef std::vector<Point> vector_point;
struct Point {
int y, x, depth;
vector_point Parents;
Point(int yPos = 0, int xPos = 0, int dDepth = 0) : y(yPos), x(xPos), depth(dDepth) { }
void operator << (const Point& point) { this->Parents.push_back(point); }
};
struct grid_t {
int height, width;
vector_2D tiles;
grid_t() // construct the grid
{
std::cin >> height >> width; // input grid height & width
tiles.resize(height, vector_1D(width, 0)); // initialize grid tiles
for(int i = 0; i < height; i++) //
for(int j = 0; j < width; j++) // input each tile one at a time
std::cin >> tiles[i][j]; // by looping through the grid
}
};
int go_find_it(grid_t &grid)
{
vector_point openList, closedList;
Point previous_node(0, 0, 0); // the point is initialized as (y = 0, x = 0, depth = 0) if not told otherwise
openList.push_back(previous_node); // (0, 0) is the first point we want to consult, of course
int min_path = 1000000;
do
{
closedList.push_back(openList[0]); // the tile we are at is good and checked. mark it so.
openList.erase(openList.begin()); // we don't need this guy no more
int y = closedList.back().y; // now we'll actually move to the new point
int x = closedList.back().x; //
int depth = closedList.back().depth; // the new depth
if(y == grid.height-1 && x == grid.width-1) return depth; // the first path is the shortest one. return it
int jump = grid.tiles[y][x]; // 'jump' is the number shown on the tile we're standing on.
if(y + jump < grid.height) // if we're not going out of bounds
{
openList.push_back(Point(y+jump, x, depth+1)); //
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
if(x + jump < grid.width) // if we're not going out of bounds
{
openList.push_back(Point(y, x+jump, depth+1)); // push in the new promising point
openList.back() << Point(y, x); // push in the point we're at right now, since it's the parent node
}
}
while(openList.size() > 0); // when there are no new tiles to check, break out and return false
return 0;
}
int main()
{
grid_t grid; // initialize grid
int min_path = go_find_it(grid); // basically a brute-force get-it-all-algorithm
std::cout << min_path << std::endl;
//system("pause");
return 0;
}
プログラムは正解を出力します。次に、最適化する必要があります(実行時間は長すぎます)。これに関するヒントはありますか?最適化は私が嫌うことの1つです。
答え
結局、ソリューションは小さなコードで構成されているように見えました。私が好きなように、少ないほど良いです。美しいソリューションを提供してくれたDejanJovanovićに感謝します
#include <iostream>
#include <vector>
#include <algorithm>
struct grid_t {
int height, width;
std::vector< std::vector<int> > tiles;
std::vector< std::vector<int> > distance;
grid_t() // construct the grid
{
std::cin >> height >> width; // input grid height & width
tiles.resize(height, std::vector<int>(width, 0)); // initialize grid tiles
distance.resize(height, std::vector<int>(width, 1000000)); // initialize grid tiles
for(int i = 0; i < height; i++) //
for(int j = 0; j < width; j++) // input each tile one at a time
std::cin >> tiles[i][j]; // by looping through the grid
}
};
int main()
{
grid_t grid; // initialize grid
grid.distance[0][0] = 0;
for(int i = 0; i < grid.height; i++) {
for(int j = 0; j < grid.width; j++) {
if(grid.distance[i][j] < 1000000) {
int d = grid.tiles[i][j];
if (i + d < grid.height) {
grid.distance[i+d][j] = std::min(grid.distance[i][j] + 1, grid.distance[i+d][j]);
}
if (j + d < grid.width) {
grid.distance[i][j+d] = std::min(grid.distance[i][j] + 1, grid.distance[i][j+d]);
}
}
}
}
if(grid.distance[grid.height-1][grid.width-1] == 1000000) grid.distance[grid.height-1][grid.width-1] = 0;
std::cout << grid.distance[grid.height-1][grid.width-1] << std::endl;
//system("pause");
return 0;
}