https://github.com/kmiddleton/rexamples/blob/master/qplot_survival.Rにあるggplot2とコードを使用してカプランマイヤー曲線を描画しようとしています。
別のデータベースにあるこのすばらしいコードで良い結果が得られました。ただし、この場合、次のエラーが発生します...データフレームに空の行があるかのように:
Error en if (nrow(layer_data) == 0) return() : argument is of length zero.
私の場合、データと関数のタイプが同じではないため、このタイプのエラーに関する以前の質問は私には役に立たないようです。
私はRを使用した統計分析にかなり慣れておらず、プログラミングのバックグラウンドがないので、これは私のデータの「ばかげたバグ」であるに違いないと思いますが、どこにあるのかわかりません…ggplot2は間違いなくプロットする行が見つかりません。手がかりや提案など、なんらかの形で私を助けていただけませんか。
これが私のデータと使用されたコードで、コンソールの準備ができています-私はknitrスクリプトでそれを試しました-。最後に、sessionInfoを投稿しました。
library(splines)
library(survival)
library(abind)
library(ggplot2)
library(grid)
acbi30(実際のデータ)というデータフレームを作成します。
mort28day <- c(1,0,1,0,0,0,0,1,0,0,0,1,1,0,1,0,0,1,0,1,1,1,1,0,1,1,1,0,0,1)
daysurv <- c(4,29,24,29,29,29,29,19,29,29,29,3,9,29,15,29,29,11,29,5,13,20,22,29,16,21,9,29,29,15)
levo <- c(0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0)
acbi30 <- data.frame(mort28day, daysurv, levo)
save(acbi30, file="acbi30.rda")
acbi30
次に、次のコマンドを貼り付けて、ggplot2を使用して関数を作成します。
t.Surv <- Surv(acbi30$daysurv, acbi30$mort28day)
t.survfit <- survfit(t.Surv~1, data=acbi30)
#define custom function to create a survival data.frame#
createSurvivalFrame <- function(f.survfit){
#initialise frame variable#
f.frame <- NULL
#check if more then one strata#
if(length(names(f.survfit$strata)) == 0){
#create data.frame with data from survfit#
f.frame <- data.frame(time=f.survfit$time, n.risk=f.survfit$n.risk, n.event=f.survfit$n.event, n.censor = f.survfit
$n.censor, surv=f.survfit$surv, upper=f.survfit$upper, lower=f.survfit$lower)
#create first two rows (start at 1)#
f.start <- data.frame(time=c(0, f.frame$time[1]), n.risk=c(f.survfit$n, f.survfit$n), n.event=c(0,0),
n.censor=c(0,0), surv=c(1,1), upper=c(1,1), lower=c(1,1))
#add first row to dataset#
f.frame <- rbind(f.start, f.frame)
#remove temporary data#
rm(f.start)
}
else {
#create vector for strata identification#
f.strata <- NULL
for(f.i in 1:length(f.survfit$strata)){
#add vector for one strata according to number of rows of strata#
f.strata <- c(f.strata, rep(names(f.survfit$strata)[f.i], f.survfit$strata[f.i]))
}
#create data.frame with data from survfit (create column for strata)#
f.frame <- data.frame(time=f.survfit$time, n.risk=f.survfit$n.risk, n.event=f.survfit$n.event, n.censor = f.survfit
$n.censor, surv=f.survfit$surv, upper=f.survfit$upper, lower=f.survfit$lower, strata=factor(f.strata))
#remove temporary data#
rm(f.strata)
#create first two rows (start at 1) for each strata#
for(f.i in 1:length(f.survfit$strata)){
#take only subset for this strata from data#
f.subset <- subset(f.frame, strata==names(f.survfit$strata)[f.i])
#create first two rows (time: 0, time of first event)#
f.start <- data.frame(time=c(0, f.subset$time[1]), n.risk=rep(f.survfit[f.i]$n, 2), n.event=c(0,0),
n.censor=c(0,0), surv=c(1,1), upper=c(1,1), lower=c(1,1), strata=rep(names(f.survfit$strata)[f.i],
2))
#add first two rows to dataset#
f.frame <- rbind(f.start, f.frame)
#remove temporary data#
rm(f.start, f.subset)
}
#reorder data#
f.frame <- f.frame[order(f.frame$strata, f.frame$time), ]
#rename row.names#
rownames(f.frame) <- NULL
}
#return frame#
return(f.frame)
}
#define custom function to draw kaplan-meier curve with ggplot#
qplot_survival <- function(f.frame, f.CI="default", f.shape=3){
#use different plotting commands dependig whether or not strata's are given#
if("strata" %in% names(f.frame) == FALSE){
#confidence intervals are drawn if not specified otherwise#
if(f.CI=="default" | f.CI==TRUE ){
#create plot with 4 layers (first 3 layers only events, last layer only censored)#
#hint: censoring data for multiple censoring events at timepoint are overplotted#
#(unlike in plot.survfit in survival package)#
ggplot(data=f.frame) + geom_step(aes(x=time, y=surv), direction="hv") + geom_step(aes(x=time,
y=upper), directions="hv", linetype=2) + geom_step(aes(x=time,y=lower), direction="hv", linetype=2) +
geom_point(data=subset(f.frame, n.censor==1), aes(x=time, y=surv), shape=f.shape)
}
else {
#create plot without confidence intervals#
ggplot(data=f.frame) + geom_step(aes(x=time, y=surv), direction="hv") +
geom_point(data=subset(f.frame, n.censor==1), aes(x=time, y=surv), shape=f.shape)
}
}
else {
if(f.CI=="default" | f.CI==FALSE){
#without CI#
ggplot(data=f.frame, aes(group=strata, colour=strata)) + geom_step(aes(x=time, y=surv),
direction="hv") + geom_point(data=subset(f.frame, n.censor==1), aes(x=time, y=surv), shape=f.shape)
}
else {
#with CI (hint: use alpha for CI)#
ggplot(data=f.frame, aes(colour=strata, group=strata)) + geom_step(aes(x=time, y=surv),
direction="hv") + geom_step(aes(x=time, y=upper), directions="hv", linetype=2, alpha=0.5) +
geom_step(aes(x=time,y=lower), direction="hv", linetype=2, alpha=0.5) +
geom_point(data=subset(f.frame, n.censor==1), aes(x=time, y=surv), shape=f.shape)
}
}
}
グローバル生存曲線のプロット(95%CI):
エラーは発生しません。
# Kaplan-Meier plot, global survival (with CI)
t.survfit <- survfit(t.Surv~1, data=acbi30)
t.survframe <- createSurvivalFrame(t.survfit)
t.survfit
qplot_survival(t.survframe, TRUE, 20)
層化生存曲線のプロット:
上記のエラーが発生します:
# Kaplan-Meier plot, stratified survival
t.survfit2 <- survfit(t.Surv~levo, data=acbi30)
t.survframe2 <- createSurvivalFrame(t.survfit2)
t.survfit2
qplot_survival(t.survframe2, TRUE, 20)
ggplot2なしで結果をプロットする:
t.survframe2の構造は、空の行がなくても問題ないように思われるため、qplot_survivalがt.survframe2のデータを読み取る際の問題である必要があります。単純なプロットを作成してもエラーは返されません。
t.survframe2
plot(t.survfit2)
データフレームの問題はどこにありますか?作成された関数は他のデータセットではうまく機能しますが、このデータセットでは機能しません...
前もって感謝します、
マレビブ
セッション情報:
sessionInfo()
Rバージョン2.15.2(2012-10-26)プラットフォーム:i386-w64-mingw32 / i386(32ビット)
locale:
[1] LC_COLLATE=Spanish_Spain.1252 LC_CTYPE=Spanish_Spain.1252
[3] LC_MONETARY=Spanish_Spain.1252 LC_NUMERIC=C
[5] LC_TIME=Spanish_Spain.1252
attached base packages:
[1] grid splines stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] ggplot2_0.9.3 abind_1.4-0 survival_2.36-14 knitr_0.8
loaded via a namespace (and not attached):
[1] colorspace_1.1-1 dichromat_1.2-4 digest_0.5.2
[4] evaluate_0.4.2 formatR_0.7 gtable_0.1.2
[7] labeling_0.1 MASS_7.3-22 munsell_0.4
[10] plyr_1.8 proto_0.3-9.2 RColorBrewer_1.0-5
[13] reshape2_1.2.1 scales_0.2.3 stringr_0.6.1
[16] tools_2.15.2