インデックス作成/スライスは、@NPE で使用される正規表現よりも高速のようです。
In [47]: def with_indexing(dstr):
....: return datetime.datetime(*map(int, [dstr[:4], dstr[5:7], dstr[8:10],
....: dstr[11:13], dstr[14:16], dstr[17:]]))
In [48]: p = re.compile('[-T:]')
In [49]: def with_regex(dt_str):
....: return datetime.datetime(*map(int, p.split(dt_str)))
In [50]: %timeit with_regex(dstr)
100000 loops, best of 3: 3.84 us per loop
In [51]: %timeit with_indexing(dstr)
100000 loops, best of 3: 2.98 us per loop
のようなファイル パーサーを使用するとnumpy.genfromtxt
、converters
引数と高速な文字列解析メソッドを使用すると、ファイル全体を 0.5 秒未満で読み取って解析できると思います。
次の関数を使用して、約 25000 行、インデックスとして ISO 日付文字列、10 データ列を含むサンプル ファイルを作成しました。
import numpy as np
import pandas as pd
def create_data():
# create dates
dates = pd.date_range('2010-01-01T00:30', '2013-01-04T23:30', freq='H')
# convert to iso
iso_dates = dates.map(lambda x: x.strftime('%Y-%m-%dT%H:%M:%S'))
# create data
data = pd.DataFrame(np.random.random((iso_dates.size, 10)) * 100,
index=iso_dates)
# write to file
data.to_csv('dates.csv', header=False)
次のコードを使用してファイルを解析するよりも:
In [54]: %timeit a = np.genfromtxt('dates.csv', delimiter=',',
converters={0:with_regex})
1 loops, best of 3: 430 ms per loop
In [55]: %timeit a = np.genfromtxt('dates.csv', delimiter=',',
converters={0:with_indexing})
1 loops, best of 3: 391 ms per loop
pandas (numpy に基づく) には、さらに高速な C ベースのファイル パーサーがあります。
In [56]: %timeit df = pd.read_csv('dates.csv', header=None, index_col=0,
parse_dates=True, date_parser=with_indexing)
10 loops, best of 3: 167 ms per loop