Python NLTKを使用すると、単語のバイグラムを簡単に計算できるようになる方法について、Web全体で大量のドキュメントを見てきました。
手紙はどうですか?
私がやりたいのは、辞書をプラグインして、さまざまな文字のペアの相対的な頻度を教えてもらうことです。
最終的には、ある種のマルコフ過程を作成して、見た目が良い(しかし偽の)単語を生成したいと思います。
コレクションモジュールのCounterを使用した例(モジュロ相対度数分布)を次に示します。
#!/usr/bin/env python
import sys
from collections import Counter
from itertools import islice
from pprint import pprint
def split_every(n, iterable):
i = iter(iterable)
piece = ''.join(list(islice(i, n)))
while piece:
yield piece
piece = ''.join(list(islice(i, n)))
def main(text):
""" return ngrams for text """
freqs = Counter()
for pair in split_every(2, text): # adjust n here
freqs[pair] += 1
return freqs
if __name__ == '__main__':
with open(sys.argv[1]) as handle:
freqs = main(handle.read())
pprint(freqs.most_common(10))
使用法:
$ python 14168601.py lorem.txt
[('t ', 32),
(' e', 20),
('or', 18),
('at', 16),
(' a', 14),
(' i', 14),
('re', 14),
('e ', 14),
('in', 14),
(' c', 12)]
バイグラムだけが必要な場合は、NLTKは必要ありません。あなたは単に次のようにそれを行うことができます:
from collections import Counter
text = "This is some text"
bigrams = Counter(x+y for x, y in zip(*[text[i:] for i in range(2)]))
for bigram, count in bigrams.most_common():
print bigram, count
出力:
is 2
s 2
me 1
om 1
te 1
t 1
i 1
e 1
s 1
hi 1
so 1
ex 1
Th 1
xt 1