70 枚の画像を処理し、勾配方向ヒストグラム (HOG) 機能を抽出するこのコードを実行しようとしています。これらは分類器 (Scikit-Learn) に渡されます。
ただし、エラーが発生します。
hog_image = hog_image_rescaled.resize((200, 200), Image.ANTIALIAS)
TypeError: an integer is required
単一の画像で試行すると正しく機能するため、理由がわかりません。
#Hog Feature
from skimage.feature import hog
from skimage import data, color, exposure
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import os
import glob
import numpy as np
from numpy import array
listagrigie = []
path = 'img/'
for infile in glob.glob( os.path.join(path, '*.jpg') ):
print("current file is: " + infile )
colorato = Image.open(infile)
greyscale = colorato.convert('1')
#hog feature
fd, hog_image = hog(greyscale, orientations=8, pixels_per_cell=(16, 16),
cells_per_block=(1, 1), visualise=True)
plt.figure(figsize=(8, 4))
print(type(fd))
plt.subplot(121).set_axis_off()
plt.imshow(grigiscala, cmap=plt.cm.gray)
plt.title('Input image')
# Rescale histogram for better display
hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))
print("hog 1 immagine shape")
print(hog_image_rescaled.shape)
hog_image = hog_image_rescaled.resize((200, 200), Image.ANTIALIAS)
listagrigie.append(hog_image)
target.append(i)
print("ARRAY of gray matrices")
print(len(listagrigie))
grigiume = np.dstack(listagrigie)
print(grigiume.shape)
grigiume = np.rollaxis(grigiume, -1)
print(grigiume.shape)
from sklearn import svm, metrics
n_samples = len(listagrigie)
data = grigiume.reshape((n_samples, -1))
# Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)
# We learn the digits on the first half of the digits
classifier.fit(data[:n_samples / 2], target[:n_samples / 2])
# Now predict the value of the digit on the second half:
expected = target[n_samples / 2:]
predicted = classifier.predict(data[n_samples / 2:])
print("expected")
print("predicted")