20

これらの厄介な川が流れてくることなく、Basemap を使用して (または、他の方法がある場合は Basemap を使用せずに) 大陸の境界をプロットする方法はありますか? 特に海に達していない金剛川の一部が気になります。

編集: Basemap ギャラリーのように、マップ上にデータをさらにプロットするつもりです(そして、世界地図の構造を与えるために、大陸の境界線をデータ上に黒い線として描画します)。 、見事な、それはこの目的には適用されません。

世界地図

画像作成者:

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(8, 4.5))
plt.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.00)
m = Basemap(projection='robin',lon_0=0,resolution='c')
m.fillcontinents(color='gray',lake_color='white')
m.drawcoastlines()
plt.savefig('world.png',dpi=75)
4

7 に答える 7

12

このような理由で、私はベースマップを完全に避け、OGRでシェープファイルを読み込んで、自分でMatplotlibアーティストに変換することがよくあります。これはかなり多くの作業ですが、さらに多くの柔軟性を提供します。

ベースマップには、入力データの座標を「作業中の投影」に変換するなど、非常に優れた機能がいくつかあります。

Basemapを使い続けたい場合は、川を含まないシェープファイルを入手してください。たとえば、Natural Earthの物理セクションには、優れた「Land」シェープファイルがあります(「scalerank」データをダウンロードして解凍します)。http://www.naturalearthdata.com/downloads/10m-physical-vectors/を参照してください

Basemapのm.readshapefile()メソッドを使用して、シェープファイルを読み込むことができます。これにより、投影座標でMatplotlibパスの頂点とコードを取得し、新しいパスに変換できます。少し回り道がありますが、Matplotlibのすべてのスタイリングオプションが提供されます。これらのほとんどは、Basemapから直接利用することはできません。それは少しハックですが、ベースマップに固執している間、私は今別の方法をしません。

それで:

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from matplotlib.collections import PathCollection
from matplotlib.path import Path

fig = plt.figure(figsize=(8, 4.5))
plt.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.00)

# MPL searches for ne_10m_land.shp in the directory 'D:\\ne_10m_land'
m = Basemap(projection='robin',lon_0=0,resolution='c')
shp_info = m.readshapefile('D:\\ne_10m_land', 'scalerank', drawbounds=True)
ax = plt.gca()
ax.cla()

paths = []
for line in shp_info[4]._paths:
    paths.append(Path(line.vertices, codes=line.codes))

coll = PathCollection(paths, linewidths=0, facecolors='grey', zorder=2)

m = Basemap(projection='robin',lon_0=0,resolution='c')
# drawing something seems necessary to 'initiate' the map properly
m.drawcoastlines(color='white', zorder=0)

ax = plt.gca()
ax.add_collection(coll)

plt.savefig('world.png',dpi=75)

与える:

ここに画像の説明を入力してください

于 2013-01-11T16:11:27.233 に答える
7

「迷惑な」川を削除する方法:

(Basemap を直接操作する代わりに) 画像を後処理する場合は、海につながっていない水域を削除できます。

import pylab as plt
A = plt.imread("world.png")

import numpy as np
import scipy.ndimage as nd
import collections

# Get a counter of the greyscale colors
a      = A[:,:,0]
colors = collections.Counter(a.ravel())
outside_and_water_color, land_color = colors.most_common(2)

# Find the contigous landmass
land_idx = a == land_color[0]

# Index these land masses
L = np.zeros(a.shape,dtype=int) 
L[land_idx] = 1
L,mass_count = nd.measurements.label(L)

# Loop over the land masses and fill the "holes"
# (rivers without outlays)
L2 = np.zeros(a.shape,dtype=int) 
L2[land_idx] = 1
L2 = nd.morphology.binary_fill_holes(L2)

# Remap onto original image
new_land = L2==1
A2 = A.copy()
c = [land_color[0],]*3 + [1,]
A2[new_land] = land_color[0]

# Plot results
plt.subplot(221)
plt.imshow(A)
plt.axis('off')

plt.subplot(222)
plt.axis('off')
B = A.copy()
B[land_idx] = [1,0,0,1]
plt.imshow(B)

plt.subplot(223)
L = L.astype(float)
L[L==0] = None
plt.axis('off')
plt.imshow(L)

plt.subplot(224)
plt.axis('off')
plt.imshow(A2)

plt.tight_layout()  # Only with newer matplotlib
plt.show()

ここに画像の説明を入力

最初の画像は元の画像で、2 番目の画像は陸塊を示しています。3 つ目は必要ありませんが、隣接するそれぞれの大陸を識別できるので楽しいものです。4 番目の画像は、「川」が削除された画像です。

于 2013-01-11T16:10:21.253 に答える
3

user1868739 の例に従って、必要なパス (一部の湖) のみを選択できます。 ワールド2

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(8, 4.5))
plt.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.00)
m = Basemap(resolution='c',projection='robin',lon_0=0)
m.fillcontinents(color='white',lake_color='white',zorder=2)
coasts = m.drawcoastlines(zorder=1,color='white',linewidth=0)
coasts_paths = coasts.get_paths()

ipolygons = range(83) + [84] # want Baikal, but not Tanganyika
# 80 = Superior+Michigan+Huron, 81 = Victoria, 82 = Aral, 83 = Tanganyika,
# 84 = Baikal, 85 = Great Bear, 86 = Great Slave, 87 = Nyasa, 88 = Erie
# 89 = Winnipeg, 90 = Ontario
for ipoly in ipolygons:
    r = coasts_paths[ipoly]
    # Convert into lon/lat vertices
    polygon_vertices = [(vertex[0],vertex[1]) for (vertex,code) in
                        r.iter_segments(simplify=False)]
    px = [polygon_vertices[i][0] for i in xrange(len(polygon_vertices))]
    py = [polygon_vertices[i][2] for i in xrange(len(polygon_vertices))]
    m.plot(px,py,linewidth=0.5,zorder=3,color='black')

plt.savefig('world2.png',dpi=100)

ただし、これは大陸に白い背景を使用している場合にのみ機能します。次の行に変更colorする'gray'と、他の川や湖が大陸と同じ色で満たされていないことがわかります。(また、遊んでarea_threshも海につながっている川は削除されません。)

m.fillcontinents(color='gray',lake_color='white',zorder=2)

世界3

白い背景のバージョンは、大陸上のあらゆる種類の土地情報をさらにカラー プロットするのに十分ですが、大陸の灰色の背景を保持したい場合は、より精巧なソリューションが必要になります。

于 2013-01-18T14:11:19.327 に答える
2

シェープファイルではなくアウトラインをプロットすることに問題がなければ、どこからでも取得できる海岸線をプロットするのは非常に簡単です。MATLAB 形式の NOAA Coastline Extractor から海岸線を取得しました: http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

海岸線を編集するために、SVG に変換し、Inkscape で編集してから、lat/lon テキスト ファイル (「MATLAB」形式) に変換し直しました。

すべての Python コードは以下に含まれています。

# ---------------------------------------------------------------
def plot_lines(mymap, lons, lats, **kwargs) :
    """Plots a custom coastline.  This plots simple lines, not
    ArcInfo-style SHAPE files.

    Args:
        lons: Longitude coordinates for line segments (degrees E)
        lats: Latitude coordinates for line segments (degrees N)

    Type Info:
        len(lons) == len(lats)
        A NaN in lons and lats signifies a new line segment.

    See:
        giss.noaa.drawcoastline_file()
    """

    # Project onto the map
    x, y = mymap(lons, lats)

    # BUG workaround: Basemap projects our NaN's to 1e30.
    x[x==1e30] = np.nan
    y[y==1e30] = np.nan

    # Plot projected line segments.
    mymap.plot(x, y, **kwargs)


# Read "Matlab" format files from NOAA Coastline Extractor.
# See: http://www.ngdc.noaa.gov/mgg/coast/

lineRE=re.compile('(.*?)\s+(.*)')
def read_coastline(fname, take_every=1) :
    nlines = 0
    xdata = array.array('d')
    ydata = array.array('d')
    for line in file(fname) :
#        if (nlines % 10000 == 0) :
#            print 'nlines = %d' % (nlines,)
        if (nlines % take_every == 0 or line[0:3] == 'nan') :
            match = lineRE.match(line)
            lon = float(match.group(1))
            lat = float(match.group(2))

            xdata.append(lon)
            ydata.append(lat)
        nlines = nlines + 1


    return (np.array(xdata),np.array(ydata))

def drawcoastline_file(mymap, fname, **kwargs) :
    """Reads and plots a coastline file.
    See:
        giss.basemap.drawcoastline()
        giss.basemap.read_coastline()
    """

    lons, lats = read_coastline(fname, take_every=1)
    return drawcoastline(mymap, lons, lats, **kwargs)
# =========================================================
# coastline2svg.py
#
import giss.io.noaa
import os
import numpy as np
import sys

svg_header = """<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->

<svg
   xmlns:dc="http://purl.org/dc/elements/1.1/"
   xmlns:cc="http://creativecommons.org/ns#"
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
   xmlns:svg="http://www.w3.org/2000/svg"
   xmlns="http://www.w3.org/2000/svg"
   version="1.1"
   width="360"
   height="180"
   id="svg2">
  <defs
     id="defs4" />
  <metadata
     id="metadata7">
    <rdf:RDF>
      <cc:Work
         rdf:about="">
        <dc:format>image/svg+xml</dc:format>
        <dc:type
           rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
        <dc:title></dc:title>
      </cc:Work>
    </rdf:RDF>
  </metadata>
  <g
     id="layer1">
"""

path_tpl = """
    <path
       d="%PATH%"
       id="%PATH_ID%"
       style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
"""

svg_footer = "</g></svg>"




# Set up paths
data_root = os.path.join(os.environ['HOME'], 'data')
#modelerc = giss.modele.read_modelerc()
#cmrun = modelerc['CMRUNDIR']
#savedisk = modelerc['SAVEDISK']

ifname = sys.argv[1]
ofname = ifname.replace('.dat', '.svg')

lons, lats = giss.io.noaa.read_coastline(ifname, 1)

out = open(ofname, 'w')
out.write(svg_header)

path_id = 1
points = []
for lon, lat in zip(lons, lats) :
    if np.isnan(lon) or np.isnan(lat) :
        # Process what we have
        if len(points) > 2 :
            out.write('\n<path d="')
            out.write('m %f,%f L' % (points[0][0], points[0][1]))
            for pt in points[1:] :
                out.write(' %f,%f' % pt)
            out.write('"\n   id="path%d"\n' % (path_id))
#            out.write('style="fill:none;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"')
            out.write(' />\n')
            path_id += 1
        points = []
    else :
        lon += 180
        lat = 180 - (lat + 90)
        points.append((lon, lat))


out.write(svg_footer)
out.close()

# =============================================================
# svg2coastline.py

import os
import sys
import re

# Reads the output of Inkscape's "Plain SVG" format, outputs in NOAA MATLAB coastline format

mainRE = re.compile(r'\s*d=".*"')
lineRE = re.compile(r'\s*d="(m|M)\s*(.*?)"')

fname = sys.argv[1]


lons = []
lats = []
for line in open(fname, 'r') :
    # Weed out extraneous lines in the SVG file
    match = mainRE.match(line)
    if match is None :
        continue

    match = lineRE.match(line)

    # Stop if something is wrong
    if match is None :
        sys.stderr.write(line)
        sys.exit(-1)

    type = match.group(1)[0]
    spairs = match.group(2).split(' ')
    x = 0
    y = 0
    for spair in spairs :
        if spair == 'L' :
            type = 'M'
            continue

        (sdelx, sdely) = spair.split(',')
        delx = float(sdelx)
        dely = float(sdely)
        if type == 'm' :
            x += delx
            y += dely
        else :
            x = delx
            y = dely
        lon = x - 180
        lat = 90 - y
        print '%f\t%f' % (lon, lat)
    print 'nan\tnan'
于 2013-01-30T20:48:24.040 に答える
1

さて、私は部分的な解決策があると思います。

基本的な考え方は、drawcoastlines()で使用されるパスは、サイズ/領域で並べ替えられるというものです。つまり、最初のN個のパスは(ほとんどのアプリケーションで)主要な陸地と湖であり、後のパスは小さな島と川です。

問題は、area_threshが適用されているかどうか、湖または小さな島などが必要かどうか、最初のN個のパスが投影(たとえば、グローバル、極地、地域)に依存することです。つまり、微調整する必要があります。これはアプリケーションごとです。

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

mp = 'cyl'
m = Basemap(resolution='c',projection=mp,lon_0=0,area_thresh=200000)

fill_color = '0.9'

# If you don't want lakes set lake_color to fill_color
m.fillcontinents(color=fill_color,lake_color='white')

# Draw the coastlines, with a thin line and same color as the continent fill.
coasts = m.drawcoastlines(zorder=100,color=fill_color,linewidth=0.5)

# Exact the paths from coasts
coasts_paths = coasts.get_paths()

# In order to see which paths you want to retain or discard you'll need to plot them one
# at a time noting those that you want etc. 
for ipoly in xrange(len(coasts_paths)):
    print ipoly
    r = coasts_paths[ipoly]
    # Convert into lon/lat vertices
    polygon_vertices = [(vertex[0],vertex[1]) for (vertex,code) in
                        r.iter_segments(simplify=False)]
    px = [polygon_vertices[i][0] for i in xrange(len(polygon_vertices))]
    py = [polygon_vertices[i][1] for i in xrange(len(polygon_vertices))]
    m.plot(px,py,'k-',linewidth=1)
    plt.show()

描画を停止するための関連するipoly(poly_stop)がわかったら、次のようなことを行うことができます...

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

mproj = ['nplaea','cyl']
mp = mproj[0]

if mp == 'nplaea':
    m = Basemap(resolution='c',projection=mp,lon_0=0,boundinglat=30,area_thresh=200000,round=1)
    poly_stop = 10
else:
    m = Basemap(resolution='c',projection=mp,lon_0=0,area_thresh=200000)
    poly_stop = 18
fill_color = '0.9'

# If you don't want lakes set lake_color to fill_color
m.fillcontinents(color=fill_color,lake_color='white')

# Draw the coastlines, with a thin line and same color as the continent fill.
coasts = m.drawcoastlines(zorder=100,color=fill_color,linewidth=0.5)

# Exact the paths from coasts
coasts_paths = coasts.get_paths()

# In order to see which paths you want to retain or discard you'll need to plot them one
# at a time noting those that you want etc. 
for ipoly in xrange(len(coasts_paths)):
    if ipoly > poly_stop: continue
    r = coasts_paths[ipoly]
    # Convert into lon/lat vertices
    polygon_vertices = [(vertex[0],vertex[1]) for (vertex,code) in
                        r.iter_segments(simplify=False)]
    px = [polygon_vertices[i][0] for i in xrange(len(polygon_vertices))]
    py = [polygon_vertices[i][1] for i in xrange(len(polygon_vertices))]
    m.plot(px,py,'k-',linewidth=1)
plt.show()

ここに画像の説明を入力してください

于 2013-01-14T19:13:11.703 に答える
1

@sampo-smolanderへの私のコメントによると

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt

fig = plt.figure(figsize=(8, 4.5))
plt.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.00)
m = Basemap(resolution='c',projection='robin',lon_0=0)
m.fillcontinents(color='gray',lake_color='white',zorder=2)
coasts = m.drawcoastlines(zorder=1,color='white',linewidth=0)
coasts_paths = coasts.get_paths()

ipolygons = range(83) + [84]
for ipoly in xrange(len(coasts_paths)):
    r = coasts_paths[ipoly]
    # Convert into lon/lat vertices
    polygon_vertices = [(vertex[0],vertex[1]) for (vertex,code) in
                        r.iter_segments(simplify=False)]
    px = [polygon_vertices[i][0] for i in xrange(len(polygon_vertices))]
    py = [polygon_vertices[i][1] for i in xrange(len(polygon_vertices))]
    if ipoly in ipolygons:
        m.plot(px,py,linewidth=0.5,zorder=3,color='black')
    else:
        m.plot(px,py,linewidth=0.5,zorder=4,color='grey')
plt.savefig('world2.png',dpi=100)

ここに画像の説明を入力

于 2013-01-24T17:34:45.420 に答える