Rの関数の簡単な(つまり、数学表記なし、長い形式の再現可能なコード)例を探していfilter
ます。畳み込み法に頭を悩ませていると思いますが、再帰オプションの一般化に固執しています。私はさまざまなドキュメントを読んで戦いましたが、ヘルプは私には少し不透明です。
これまでに私が理解した例を次に示します。
# Set some values for filter components
f1 <- 1; f2 <- 1; f3 <- 1;
そして、私たちは行きます:
# basic convolution filter
filter(1:5,f1,method="convolution")
[1] 1 2 3 4 5
#equivalent to:
x[1] * f1
x[2] * f1
x[3] * f1
x[4] * f1
x[5] * f1
# convolution with 2 coefficients in filter
filter(1:5,c(f1,f2),method="convolution")
[1] 3 5 7 9 NA
#equivalent to:
x[1] * f2 + x[2] * f1
x[2] * f2 + x[3] * f1
x[3] * f2 + x[4] * f1
x[4] * f2 + x[5] * f1
x[5] * f2 + x[6] * f1
# convolution with 3 coefficients in filter
filter(1:5,c(f1,f2,f3),method="convolution")
[1] NA 6 9 12 NA
#equivalent to:
NA * f3 + x[1] * f2 + x[2] * f1 #x[0] = doesn't exist/NA
x[1] * f3 + x[2] * f2 + x[3] * f1
x[2] * f3 + x[3] * f2 + x[4] * f1
x[3] * f3 + x[4] * f2 + x[5] * f1
x[4] * f3 + x[5] * f2 + x[6] * f1
今、私は私のかわいそうな小さな脳幹を傷つけています。私はこの投稿の情報を使用して最も基本的な例を理解することができました:https ://stackoverflow.com/a/11552765/496803
filter(1:5, f1, method="recursive")
[1] 1 3 6 10 15
#equivalent to:
x[1]
x[2] + f1*x[1]
x[3] + f1*x[2] + f1^2*x[1]
x[4] + f1*x[3] + f1^2*x[2] + f1^3*x[1]
x[5] + f1*x[4] + f1^2*x[3] + f1^3*x[2] + f1^4*x[1]
誰かが、とを使用した再帰バージョンの畳み込みの例について、上記と同様のコードを提供できますfilter = c(f1,f2)
かfilter = c(f1,f2,f3)
?
回答は、関数の結果と一致する必要があります。
filter(1:5, c(f1,f2), method="recursive")
[1] 1 3 7 14 26
filter(1:5, c(f1,f2,f3), method="recursive")
[1] 1 3 7 15 30
編集
@agstudyのきちんとした答えを使用してファイナライズするには:
> filter(1:5, f1, method="recursive")
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 3 6 10 15
> y1 <- x[1]
> y2 <- x[2] + f1*y1
> y3 <- x[3] + f1*y2
> y4 <- x[4] + f1*y3
> y5 <- x[5] + f1*y4
> c(y1,y2,y3,y4,y5)
[1] 1 3 6 10 15
と...
> filter(1:5, c(f1,f2), method="recursive")
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 3 7 14 26
> y1 <- x[1]
> y2 <- x[2] + f1*y1
> y3 <- x[3] + f1*y2 + f2*y1
> y4 <- x[4] + f1*y3 + f2*y2
> y5 <- x[5] + f1*y4 + f2*y3
> c(y1,y2,y3,y4,y5)
[1] 1 3 7 14 26
と...
> filter(1:5, c(f1,f2,f3), method="recursive")
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 3 7 15 30
> y1 <- x[1]
> y2 <- x[2] + f1*y1
> y3 <- x[3] + f1*y2 + f2*y1
> y4 <- x[4] + f1*y3 + f2*y2 + f3*y1
> y5 <- x[5] + f1*y4 + f2*y3 + f3*y2
> c(y1,y2,y3,y4,y5)
[1] 1 3 7 15 30