私は、FSM の実装が簡単ではないことに同意しません。これは非常に近視眼的であり、代替手段に精通していないか、複雑なステート マシンの経験が不足していることを示しています。
根本的な問題は、ステート マシングラフは明らかですが、FSMコードはそうではないことです。ダースの状態と多数の遷移を超えると、FSM コードは見苦しく、理解するのが難しくなります。
ステート マシンを描画し、そのための Java コードを生成するツールがあります。ただし、そのためのオープンソースツールは知りません。
さて、Erlang/Scala に戻ると、Scala にはアクターとメッセージ パッシングもあり、JVM に基づいているため、制約を考えると、Erlang よりも優れた代替手段になる可能性があります。
Scala にも DFA/NFA ライブラリがありますが、特に優れたものではありません。任意の正規表現 (つまり、リテラルは文字である必要はありません) から DFA/NFA への変換をサポートしています。
それを使用したコードを以下に投稿します。このコードでは、単語のリストに対して任意のプレフィックスの任意の連続した組み合わせを受け入れる FSM を作成するというアイデアがあり、事前定義されたキーバインドなしでメニュー オプションを検索するというアイデアです。
import scala.util.regexp._
import scala.util.automata._
// The goal of this object below is to create a class, MyChar, which will
// be the domain of the tokens used for transitions in the DFA. They could
// be integers, enumerations or even a set of case classes and objects. For
// this particular code, it's just Char.
object MyLang extends WordExp {
type _regexpT = RegExp
type _labelT = MyChar
case class MyChar(c:Char) extends Label
}
// We now need to import the types we defined, as well as any classes we
// created extending Label.
import MyLang._
// We also need an instance (singleton, in this case) of WordBerrySethi,
// which will convert the regular expression into an automatum. Notice the
// language being used is MyLang.
object MyBerrySethi extends WordBerrySethi {
override val lang = MyLang
}
// Last, a function which takes an input in the language we defined,
// and traverses the DFA, returning whether we are at a sink state or
// not. For other uses it will probably make more sense to test against
// both sink states and final states.
def matchDet(pat: DetWordAutom[MyChar], seq: Seq[Char]): Boolean =
!pat.isSink((0 /: seq) ((state, c) => pat.next(state, MyChar(c))))
// This converts a regular expression to a DFA, with using an intermediary NFA
def compile(pat: MyLang._regexpT) =
new SubsetConstruction(MyBerrySethi.automatonFrom(pat, 100000)).determinize
// Defines a "?" function, since it isn't provided by the library
def Quest(rs: _regexpT*) = Alt(Eps, Sequ(rs: _*)) // Quest(pat) = Eps|pat = (pat)?
// And now, the algorithm proper. It splits the string into words
// converts each character into Letter[MyChar[Char]],
// produce the regular expression desired for each word using Quest and Sequ,
// then the final regular expression by using Sequ with each subexpression.
def words(s : String) = s.split("\\W+")
def wordToRegex(w : String) : Seq[MyLang._regexpT] = w.map(c => Letter(MyChar(c)))
def wordRegex(w : String) = Quest(wordToRegex(w) reduceRight ((a,b) => Sequ(a, Quest(b))))
def phraseRegex(s : String) = Sequ(words(s).map(w => wordRegex(w)) : _*)
// This takes a list of strings, produce a DFA for each, and returns a list of
// of tuples formed by DFA and string.
def regexList(l : List[String]) = l.map(s => compile(phraseRegex(s)) -> s)
// The main function takes a list of strings, and returns a function that will
// traverse each DFA, and return all strings associated with DFAs that did not
// end up in a sink state.
def regexSearcher(l : List[String]) = {
val r = regexList(l)
(s : String) => r.filter(t => matchDet(t._1, s)).map(_._2)
}