I am taking a look at large matrix multiplication and ran the following experiment to form a baseline test:
- Randomly generate two 4096x4096 matrixes X, Y from std normal (0 mean, 1 stddev).
- Z = X*Y
- Sum elements of Z (to make sure they are accessed) and output.
Here is the naïve C++ implementatation:
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
constexpr size_t dim = 4096;
float* x = new float[dim*dim];
float* y = new float[dim*dim];
float* z = new float[dim*dim];
random_device rd;
mt19937 gen(rd());
normal_distribution<float> dist(0, 1);
for (size_t i = 0; i < dim*dim; i++)
{
x[i] = dist(gen);
y[i] = dist(gen);
}
for (size_t row = 0; row < dim; row++)
for (size_t col = 0; col < dim; col++)
{
float acc = 0;
for (size_t k = 0; k < dim; k++)
acc += x[row*dim + k] * y[k*dim + col];
z[row*dim + col] = acc;
}
float t = 0;
for (size_t i = 0; i < dim*dim; i++)
t += z[i];
cout << t << endl;
delete x;
delete y;
delete z;
}
Compile and run:
$ g++ -std=gnu++11 -O3 test.cpp
$ time ./a.out
Here is the Octave/matlab implementation:
X = stdnormal_rnd(4096, 4096);
Y = stdnormal_rnd(4096, 4096);
Z = X*Y;
sum(sum(Z))
Run:
$ time octave < test.octave
Octave under the hood is using BLAS (I assume the sgemm
function)
The hardware is i7 3930X on Linux x86-64 with 24 GB of ram. BLAS appears to be using two cores. Perhaps a hyperthreaded pair?
I found that the C++ version compiled with GCC 4.7 on -O3
took 9 minutes to execute:
real 9m2.126s
user 9m0.302s
sys 0m0.052s
The octave version took 6 seconds:
real 0m5.985s
user 0m10.881s
sys 0m0.144s
I understand that BLAS is optimized to all hell, and the naïve algorithm is totally ignoring caches and so on, but seriously -- 90 times?
Can anyone explain this difference? What exactly is the architecture of the BLAS implementation? I see it is using Fortran, but what is happening at the CPU level? What algorithm is it using? How is it using the CPU caches? What x86-64 machine instructions does it call? (Is it using advanced CPU features like AVX?) Where does it get this extra speed from?
Which key optimizations to the C++ algorithm could get it on par with the BLAS version?
I ran octave under gdb and stopped it half way through computation a few times. It had started a second thread and here are the stacks (all stops it looked similar):
(gdb) thread 1
#0 0x00007ffff6e17148 in pthread_join () from /lib/x86_64-linux-gnu/libpthread.so.0
#1 0x00007ffff1626721 in ATL_join_tree () from /usr/lib/libblas.so.3
#2 0x00007ffff1626702 in ATL_join_tree () from /usr/lib/libblas.so.3
#3 0x00007ffff15ae357 in ATL_dptgemm () from /usr/lib/libblas.so.3
#4 0x00007ffff1384b59 in atl_f77wrap_dgemm_ () from /usr/lib/libblas.so.3
#5 0x00007ffff193effa in dgemm_ () from /usr/lib/libblas.so.3
#6 0x00007ffff6049727 in xgemm(Matrix const&, Matrix const&, blas_trans_type, blas_trans_type) () from /usr/lib/x86_64-linux-gnu/liboctave.so.1
#7 0x00007ffff6049954 in operator*(Matrix const&, Matrix const&) () from /usr/lib/x86_64-linux-gnu/liboctave.so.1
#8 0x00007ffff7839e4e in ?? () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
#9 0x00007ffff765a93a in do_binary_op(octave_value::binary_op, octave_value const&, octave_value const&) () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
#10 0x00007ffff76c4190 in tree_binary_expression::rvalue1(int) () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
#11 0x00007ffff76c33a5 in tree_simple_assignment::rvalue1(int) () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
#12 0x00007ffff76d0864 in tree_evaluator::visit_statement(tree_statement&) () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
#13 0x00007ffff76cffae in tree_evaluator::visit_statement_list(tree_statement_list&) () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
#14 0x00007ffff757f6d4 in main_loop() () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
#15 0x00007ffff7527abf in octave_main () from /usr/lib/x86_64-linux-gnu/liboctinterp.so.1
(gdb) thread 2
#0 0x00007ffff14ba4df in ATL_dJIK56x56x56TN56x56x0_a1_b1 () from /usr/lib/libblas.so.3
(gdb) bt
#0 0x00007ffff14ba4df in ATL_dJIK56x56x56TN56x56x0_a1_b1 () from /usr/lib/libblas.so.3
#1 0x00007ffff15a5fd7 in ATL_dmmIJK2 () from /usr/lib/libblas.so.3
#2 0x00007ffff15a6ae4 in ATL_dmmIJK () from /usr/lib/libblas.so.3
#3 0x00007ffff1518e65 in ATL_dgemm () from /usr/lib/libblas.so.3
#4 0x00007ffff15adf7a in ATL_dptgemm0 () from /usr/lib/libblas.so.3
#5 0x00007ffff6e15e9a in start_thread () from /lib/x86_64-linux-gnu/libpthread.so.0
#6 0x00007ffff6b41cbd in clone () from /lib/x86_64-linux-gnu/libc.so.6
#7 0x0000000000000000 in ?? ()
It is calling BLAS gemm
as expected.
The first thread appears to be joining the second, so I am not sure whether these two threads account for the 200% CPU usage observed or not.
Which library is ATL_dgemm libblas.so.3 and where is its code?
$ ls -al /usr/lib/libblas.so.3
/usr/lib/libblas.so.3 -> /etc/alternatives/libblas.so.3
$ ls -al /etc/alternatives/libblas.so.3
/etc/alternatives/libblas.so.3 -> /usr/lib/atlas-base/atlas/libblas.so.3
$ ls -al /usr/lib/atlas-base/atlas/libblas.so.3
/usr/lib/atlas-base/atlas/libblas.so.3 -> libblas.so.3.0
$ ls -al /usr/lib/atlas-base/atlas/libblas.so.3.0
/usr/lib/atlas-base/atlas/libblas.so.3.0
$ dpkg -S /usr/lib/atlas-base/atlas/libblas.so.3.0
libatlas3-base: /usr/lib/atlas-base/atlas/libblas.so.3.0
$ apt-get source libatlas3-base
It is ATLAS 3.8.4
Here are the optimizations I later implemented:
Using a tiled approach where I preload 64x64 blocks of X, Y and Z into separate arrays.
Changing the calculation of each block so that the inner loop looks like this:
for (size_t tcol = 0; tcol < block_width; tcol++)
bufz[trow][tcol] += B * bufy[tk][tcol];
This allows GCC to autovectorize to SIMD instructions and also allows for instruction level parallelism (I think).
Turning on march=corei7-avx
. This gains 30% extra speed but is cheating because I think the BLAS library is prebuilt.
Here is the code:
#include <iostream>
#include <algorithm>
using namespace std;
constexpr size_t dim = 4096;
constexpr size_t block_width = 64;
constexpr size_t num_blocks = dim / block_width;
double X[dim][dim], Y[dim][dim], Z[dim][dim];
double bufx[block_width][block_width];
double bufy[block_width][block_width];
double bufz[block_width][block_width];
void calc_block()
{
for (size_t trow = 0; trow < block_width; trow++)
for (size_t tk = 0; tk < block_width; tk++)
{
double B = bufx[trow][tk];
for (size_t tcol = 0; tcol < block_width; tcol++)
bufz[trow][tcol] += B * bufy[tk][tcol];
}
}
int main()
{
random_device rd;
mt19937 gen(rd());
normal_distribution<double> dist(0, 1);
for (size_t row = 0; row < dim; row++)
for (size_t col = 0; col < dim; col++)
{
X[row][col] = dist(gen);
Y[row][col] = dist(gen);
Z[row][col] = 0;
}
for (size_t block_row = 0; block_row < num_blocks; block_row++)
for (size_t block_col = 0; block_col < num_blocks; block_col++)
{
for (size_t trow = 0; trow < block_width; trow++)
for (size_t tcol = 0; tcol < block_width; tcol++)
bufz[trow][tcol] = 0;
for (size_t block_k = 0; block_k < num_blocks; block_k++)
{
for (size_t trow = 0; trow < block_width; trow++)
for (size_t tcol = 0; tcol < block_width; tcol++)
{
bufx[trow][tcol] = X[block_row*block_width + trow][block_k*block_width + tcol];
bufy[trow][tcol] = Y[block_k*block_width + trow][block_col*block_width + tcol];
}
calc_block();
}
for (size_t trow = 0; trow < block_width; trow++)
for (size_t tcol = 0; tcol < block_width; tcol++)
Z[block_row*block_width + trow][block_col*block_width + tcol] = bufz[trow][tcol];
}
double t = 0;
for (size_t row = 0; row < dim; row++)
for (size_t col = 0; col < dim; col++)
t += Z[row][col];
cout << t << endl;
}
All the action is in the calc_block function - over 90% of the time is spent in it.
The new time is:
real 0m17.370s
user 0m17.213s
sys 0m0.092s
Which is much closer.
The decompile of the calc_block function is as follows:
0000000000401460 <_Z10calc_blockv>:
401460: b8 e0 21 60 00 mov $0x6021e0,%eax
401465: 41 b8 e0 23 61 00 mov $0x6123e0,%r8d
40146b: 31 ff xor %edi,%edi
40146d: 49 29 c0 sub %rax,%r8
401470: 49 8d 34 00 lea (%r8,%rax,1),%rsi
401474: 48 89 f9 mov %rdi,%rcx
401477: ba e0 a1 60 00 mov $0x60a1e0,%edx
40147c: 48 c1 e1 09 shl $0x9,%rcx
401480: 48 81 c1 e0 21 61 00 add $0x6121e0,%rcx
401487: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
40148e: 00 00
401490: c4 e2 7d 19 01 vbroadcastsd (%rcx),%ymm0
401495: 48 83 c1 08 add $0x8,%rcx
401499: c5 fd 59 0a vmulpd (%rdx),%ymm0,%ymm1
40149d: c5 f5 58 08 vaddpd (%rax),%ymm1,%ymm1
4014a1: c5 fd 29 08 vmovapd %ymm1,(%rax)
4014a5: c5 fd 59 4a 20 vmulpd 0x20(%rdx),%ymm0,%ymm1
4014aa: c5 f5 58 48 20 vaddpd 0x20(%rax),%ymm1,%ymm1
4014af: c5 fd 29 48 20 vmovapd %ymm1,0x20(%rax)
4014b4: c5 fd 59 4a 40 vmulpd 0x40(%rdx),%ymm0,%ymm1
4014b9: c5 f5 58 48 40 vaddpd 0x40(%rax),%ymm1,%ymm1
4014be: c5 fd 29 48 40 vmovapd %ymm1,0x40(%rax)
4014c3: c5 fd 59 4a 60 vmulpd 0x60(%rdx),%ymm0,%ymm1
4014c8: c5 f5 58 48 60 vaddpd 0x60(%rax),%ymm1,%ymm1
4014cd: c5 fd 29 48 60 vmovapd %ymm1,0x60(%rax)
4014d2: c5 fd 59 8a 80 00 00 vmulpd 0x80(%rdx),%ymm0,%ymm1
4014d9: 00
4014da: c5 f5 58 88 80 00 00 vaddpd 0x80(%rax),%ymm1,%ymm1
4014e1: 00
4014e2: c5 fd 29 88 80 00 00 vmovapd %ymm1,0x80(%rax)
4014e9: 00
4014ea: c5 fd 59 8a a0 00 00 vmulpd 0xa0(%rdx),%ymm0,%ymm1
4014f1: 00
4014f2: c5 f5 58 88 a0 00 00 vaddpd 0xa0(%rax),%ymm1,%ymm1
4014f9: 00
4014fa: c5 fd 29 88 a0 00 00 vmovapd %ymm1,0xa0(%rax)
401501: 00
401502: c5 fd 59 8a c0 00 00 vmulpd 0xc0(%rdx),%ymm0,%ymm1
401509: 00
40150a: c5 f5 58 88 c0 00 00 vaddpd 0xc0(%rax),%ymm1,%ymm1
401511: 00
401512: c5 fd 29 88 c0 00 00 vmovapd %ymm1,0xc0(%rax)
401519: 00
40151a: c5 fd 59 8a e0 00 00 vmulpd 0xe0(%rdx),%ymm0,%ymm1
401521: 00
401522: c5 f5 58 88 e0 00 00 vaddpd 0xe0(%rax),%ymm1,%ymm1
401529: 00
40152a: c5 fd 29 88 e0 00 00 vmovapd %ymm1,0xe0(%rax)
401531: 00
401532: c5 fd 59 8a 00 01 00 vmulpd 0x100(%rdx),%ymm0,%ymm1
401539: 00
40153a: c5 f5 58 88 00 01 00 vaddpd 0x100(%rax),%ymm1,%ymm1
401541: 00
401542: c5 fd 29 88 00 01 00 vmovapd %ymm1,0x100(%rax)
401549: 00
40154a: c5 fd 59 8a 20 01 00 vmulpd 0x120(%rdx),%ymm0,%ymm1
401551: 00
401552: c5 f5 58 88 20 01 00 vaddpd 0x120(%rax),%ymm1,%ymm1
401559: 00
40155a: c5 fd 29 88 20 01 00 vmovapd %ymm1,0x120(%rax)
401561: 00
401562: c5 fd 59 8a 40 01 00 vmulpd 0x140(%rdx),%ymm0,%ymm1
401569: 00
40156a: c5 f5 58 88 40 01 00 vaddpd 0x140(%rax),%ymm1,%ymm1
401571: 00
401572: c5 fd 29 88 40 01 00 vmovapd %ymm1,0x140(%rax)
401579: 00
40157a: c5 fd 59 8a 60 01 00 vmulpd 0x160(%rdx),%ymm0,%ymm1
401581: 00
401582: c5 f5 58 88 60 01 00 vaddpd 0x160(%rax),%ymm1,%ymm1
401589: 00
40158a: c5 fd 29 88 60 01 00 vmovapd %ymm1,0x160(%rax)
401591: 00
401592: c5 fd 59 8a 80 01 00 vmulpd 0x180(%rdx),%ymm0,%ymm1
401599: 00
40159a: c5 f5 58 88 80 01 00 vaddpd 0x180(%rax),%ymm1,%ymm1
4015a1: 00
4015a2: c5 fd 29 88 80 01 00 vmovapd %ymm1,0x180(%rax)
4015a9: 00
4015aa: c5 fd 59 8a a0 01 00 vmulpd 0x1a0(%rdx),%ymm0,%ymm1
4015b1: 00
4015b2: c5 f5 58 88 a0 01 00 vaddpd 0x1a0(%rax),%ymm1,%ymm1
4015b9: 00
4015ba: c5 fd 29 88 a0 01 00 vmovapd %ymm1,0x1a0(%rax)
4015c1: 00
4015c2: c5 fd 59 8a c0 01 00 vmulpd 0x1c0(%rdx),%ymm0,%ymm1
4015c9: 00
4015ca: c5 f5 58 88 c0 01 00 vaddpd 0x1c0(%rax),%ymm1,%ymm1
4015d1: 00
4015d2: c5 fd 29 88 c0 01 00 vmovapd %ymm1,0x1c0(%rax)
4015d9: 00
4015da: c5 fd 59 82 e0 01 00 vmulpd 0x1e0(%rdx),%ymm0,%ymm0
4015e1: 00
4015e2: c5 fd 58 80 e0 01 00 vaddpd 0x1e0(%rax),%ymm0,%ymm0
4015e9: 00
4015ea: 48 81 c2 00 02 00 00 add $0x200,%rdx
4015f1: 48 39 ce cmp %rcx,%rsi
4015f4: c5 fd 29 80 e0 01 00 vmovapd %ymm0,0x1e0(%rax)
4015fb: 00
4015fc: 0f 85 8e fe ff ff jne 401490 <_Z10calc_blockv+0x30>
401602: 48 83 c7 01 add $0x1,%rdi
401606: 48 05 00 02 00 00 add $0x200,%rax
40160c: 48 83 ff 40 cmp $0x40,%rdi
401610: 0f 85 5a fe ff ff jne 401470 <_Z10calc_blockv+0x10>
401616: c5 f8 77 vzeroupper
401619: c3 retq
40161a: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)