そして次のように:
M2 <- List(List( x, x^2, x^3, x^4),
List( x^5, x^6, x^7, x^8),
List( x^9, 2*x ,3*x , 4*x),
List(2*x^2, 3*x^3, 4*x^4, 5*x^5))
Inverse(M2)
ただし、答えはかなり複雑です(最初の4行を再フォーマットするだけで済みます)。
{{(x^6*3*x*5*x^5-x^6*4*x*4*x^4+x^8*2*x*4*x^4-x^7*2*x*5*x^5+
x^7*4*x*3*x^3-x^8*3*x*3*x^3)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-
x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+
x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-
x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(x^4*3*x*3*x^3-x^4*2*x*4*x^4+x^3*2*x*5*x^5-x^3*4*x*3*x^3-x^2*3*x*5*x^5+x^2*4*x*4*x^4)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),0,(x^10*3*x-x^9*4*x-x^10*3*x+x^9*4*x-x^11*2*x+x^11*2*x)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2)},{(x^5*4*x*4*x^4-x^5*3*x*5*x^5-x^17*4*x^4+x^16*5*x^5-x^7*4*x*2*x^2+x^8*3*x*2*x^2)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(3*x^2*5*x^5-4*x^2*4*x^4+x^13*4*x^4-x^4*3*x*2*x^2-x^12*5*x^5+x^3*4*x*2*x^2)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),0,(x^8*4*x-x^9*3*x+x^9*3*x-x^8*4*x)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2)},{(x^5*2*x*5*x^5-x^5*4*x*3*x^3+x^17*3*x^3-x^15*5*x^5+x^6*4*x*2*x^2-x^8*2*x*2*x^2)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(4*x^2*3*x^3-2*x^2*5*x^5-x^13*3*x^3+x^11*5*x^5-x^2*4*x*2*x^2+x^4*2*x*2*x^2)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(x^7*5*x^5-x^9*3*x^3+x^9*3*x^3-x^7*5*x^5)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(x^9*2*x-x^7*4*x-x^9*2*x+x^7*4*x-x^19+x^19)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2)},{(x^5*3*x*3*x^3-x^5*2*x*4*x^4-x^16*3*x^3+x^15*4*x^4-x^6*3*x*2*x^2+x^7*2*x*2*x^2)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(2*x^2*4*x^4-3*x^2*3*x^3+x^12*3*x^3-x^11*4*x^4+x^2*3*x*2*x^2-x^3*2*x*2*x^2)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(x^8*3*x^3-x^7*4*x^4-x^8*3*x^3+x^7*4*x^4-x^9*2*x^2+x^9*2*x^2)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2),(x^7*3*x-x^8*2*x+x^8*2*x-x^7*3*x)/(x^7*3*x*5*x^5-x^7*4*x*4*x^4-x^8*2*x*5*x^5+x^8*4*x*3*x^3-x^9*3*x*3*x^3+x^9*3*x*3*x^3+x^8*2*x*5*x^5-x^8*4*x*3*x^3-x^7*3*x*5*x^5+x^7*4*x*4*x^4-x^19*4*x^4+x^19*4*x^4+x^18*5*x^5-x^9*4*x*2*x^2-x^18*5*x^5+x^9*4*x*2*x^2-x^11*2*x*2*x^2+x^11*2*x*2*x^2)}};