平均シフト クラスタリングに問題があります。クラスター数が少ない場合 (2、3、4) は非常に高速に動作し、正しい結果を出力しますが、クラスター数が増えると失敗します。
たとえば、3 つのクラスターが正常に検出されます。
しかし、数が増えると失敗します:
完全なコード リストは次のとおりです。
#!/usr/bin/env python
import sys
import logging
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plot
from sklearn.cluster import estimate_bandwidth, MeanShift, get_bin_seeds
from sklearn.datasets.samples_generator import make_blobs
def test_mean_shift():
logging.debug('Generating mixture')
count = 5000
blocks = 7
std_error = 0.5
mixture, clusters = make_blobs(n_samples=count, centers=blocks, cluster_std=std_error)
logging.debug('Measuring bendwith')
bandwidth = estimate_bandwidth(mixture)
logging.debug('Bandwidth: %r' % bandwidth)
mean_shift = MeanShift(bandwidth=bandwidth)
logging.debug('Clustering')
mean_shift.fit(mixture)
shifted = mean_shift.cluster_centers_
guess = mean_shift.labels_
logging.debug('Centers: %r' % shifted)
def draw_mixture(mixture, clusters, output='mixture.png'):
plot.clf()
plot.scatter(mixture[:, 0], mixture[:, 1],
c=clusters,
cmap=plot.cm.coolwarm)
plot.savefig(output)
def draw_mixture_shifted(mixture, shifted, output='mixture_shifted.png'):
plot.clf()
plot.scatter(mixture[:, 0], mixture[:, 1], c='r')
plot.scatter(shifted[:, 0], shifted[:, 1], c='b')
plot.savefig(output)
logging.debug('Drawing')
draw_mixture_shifted(mixture, shifted)
draw_mixture(mixture, guess)
if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG)
test_mean_shift()
私は何を間違っていますか?