手でそれを行うことができます:
ncols = 2
nrows = 2
inset_hfrac = .3
inset_vfrac = .3
inset_hfrac_offset = .6
inset_vfrac_offset = .6
top_pad = .1
bottom_pad = .1
left_pad = .1
right_pad = .1
hspace = .1
vspace = .1
ax_width = (1 - left_pad - right_pad - (ncols - 1) * hspace) / ncols
ax_height = (1 - top_pad - bottom_pad - (nrows - 1) * vspace) / nrows
fig = figure()
ax_lst = []
for j in range(ncols):
for k in range(nrows):
a_bottom = bottom_pad + k * ( ax_height + vspace)
a_left = left_pad + j * (ax_width + hspace)
inset_bottom = a_bottom + inset_vfrac_offset * ax_height
inset_left = a_left + inset_hfrac_offset * ax_width
ax = fig.add_axes([a_left, a_bottom, ax_width, ax_height])
ax_in = fig.add_axes([inset_left, inset_bottom, ax_width * inset_hfrac, ax_height * inset_vfrac])
ax_lst.append((ax,ax_in))
これにより、 を使用する能力が犠牲になりますtight_layout
が、膨大な量の制御が得られます。