指定した範囲内で乱数を取得したいのですが、問題は Java の Random ライブラリや初期化しなければならないものを使用したくないということです。
Javaライブラリを使用せずに乱数を取得する別の方法を知っている人はいますか?
ありがとう
編集: このソリューションについてどう思いますか?
int random = i + (int)(System.currentTimeMillis()%((j - i) + 1));
i と j は範囲です
最も多くの乱数を生成する最良の方法は、Mersenne Twister 乱数ジェネレーターを使用することであることがわかりました。このジェネレーターは、再シードする必要がないように十分な乱数を提供します。周期は (2^19937) − 1 です。
MerseeneTwister のソース コードは次のとおりです。
これは、乱数を生成するクラスです。
class RandomVariable {
/** Initialize Mersenne Twister generator. */
private static MersenneTwister rnd = new MersenneTwister();
public static double rand() {
return rnd.nextDouble();
}
/** Generate a random number from a uniform random variable.
*
* @param min Mininum value for the random variable.
* @param max Maximum value for the random variable.
*
* @return A random double between min and max.
*/
public static double uniform(double min, double max) {
return min + (max - min) * rand();
}
}
乱数を生成するサンプルを次に示します。ソースからコメントを削除したことに注意してください。これはコードのオープン ソースの性質を損なう可能性がありますが、すべてをコピーしてコードとしてフォーマットすることはできませんでした。
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
public class sample{
public static void main(String args[]){
RandomVariable gen = new RandomVariable();
double num = gen.uniform(-1,1);
int n = 10000;
Set<Double> nums = new HashSet<Double>();
while (numbers.size() < n)
nums.add(gen.uniform(-1,1));
}
}
class RandomVariable {
/** Initialize Mersenne Twister generator. */
private static MersenneTwister rnd = new MersenneTwister();
public static double rand() {
return rnd.nextDouble();
}
/** Generate a random number from a uniform random variable.
*
* @param min Mininum value for the random variable.
* @param max Maximum value for the random variable.
*
* @return A random double between min and max.
*/
public static double uniform(double min, double max) {
return min + (max - min) * rand();
}
}
class MersenneTwister extends java.util.Random implements Serializable {
// Period parameters
private static final int N = 624;
private static final int M = 397;
private static final int MATRIX_A = 0x9908b0df; // private static final
//* constant vector a
private static final int UPPER_MASK = 0x80000000; // most significant
// w-r bits
private static final int LOWER_MASK = 0x7fffffff; // least significant
// r bits
// Tempering parameters
private static final int TEMPERING_MASK_B = 0x9d2c5680;
private static final int TEMPERING_MASK_C = 0xefc60000;
private int mt[]; // the array for the state vector
private int mti; // mti==N+1 means mt[N] is not initialized
private int mag01[];
// a good initial seed (of int size, though stored in a long)
// private static final long GOOD_SEED = 4357;
/* implemented here because there's a bug in Random's implementation
of the Gaussian code (divide by zero, and log(0), ugh!), yet its
gaussian variables are private so we can't access them here. :-( */
private double __nextNextGaussian;
private boolean __haveNextNextGaussian;
/**
* Constructor using the default seed.
*/
public MersenneTwister() {
this(System.currentTimeMillis());
}
/**
* Constructor using a given seed. Though you pass this seed in
* as a long, it's best to make sure it's actually an integer.
*/
public MersenneTwister(final long seed) {
super(seed); /* just in case */
setSeed(seed);
}
/**
* Constructor using an array.
*/
public MersenneTwister(final int[] array) {
super(System.currentTimeMillis());
/* pick something at random just in case */
setSeed(array);
}
/**
* Initalize the pseudo random number generator. Don't
* pass in a long that's bigger than an int (Mersenne Twister
* only uses the first 32 bits for its seed).
*/
synchronized public void setSeed(final long seed) {
// it's always good style to call super
super.setSeed(seed);
// Due to a bug in java.util.Random clear up to 1.2, we're
// doing our own Gaussian variable.
__haveNextNextGaussian = false;
mt = new int[N];
mag01 = new int[2];
mag01[0] = 0x0;
mag01[1] = MATRIX_A;
mt[0] = (int) (seed & 0xfffffff);
for (mti = 1; mti < N; mti++) {
mt[mti] =
(1812433253 * (mt[mti - 1] ^ (mt[mti - 1] >>> 30)) + mti);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array mt[]. */
/* 2002/01/09 modified by Makoto Matsumoto */
mt[mti] &= 0xffffffff;
/* for >32 bit machines */
}
}
/**
* An alternative, more complete, method of seeding the
* pseudo random number generator. array must be an
* array of 624 ints, and they can be any value as long as
* they're not *all* zero.
*/
synchronized public void setSeed(final int[] array) {
int i, j, k;
setSeed(19650218);
i = 1;
j = 0;
k = (N > array.length ? N : array.length);
for (; k != 0; k--) {
mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * 1664525))
+ array[j] + j; /* non linear */
mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */
i++;
j++;
if (i >= N) {
mt[0] = mt[N - 1];
i = 1;
}
if (j >= array.length) {
j = 0;
}
}
for (k = N - 1; k != 0; k--) {
mt[i] = (mt[i] ^ ((mt[i - 1] ^ (mt[i - 1] >>> 30)) * 1566083941))
- i; /* non linear */
mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */
i++;
if (i >= N) {
mt[0] = mt[N - 1];
i = 1;
}
}
mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */
}
/**
* Returns an integer with <em>bits</em> bits filled with a random number.
*/
synchronized protected int next(final int bits) {
int y;
if (mti >= N) // generate N words at one time
{
int kk;
final int[] mt = this.mt; // locals are slightly faster
final int[] mag01 = this.mag01; // locals are slightly faster
for (kk = 0; kk < N - M; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1];
}
for (; kk < N - 1; kk++) {
y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK);
mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1];
}
y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= y >>> 11; // TEMPERING_SHIFT_U(y)
y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_S(y)
y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_T(y)
y ^= (y >>> 18); // TEMPERING_SHIFT_L(y)
return y >>> (32 - bits); // hope that's right!
}
/* If you've got a truly old version of Java, you can omit these
two next methods. */
private synchronized void writeObject(final ObjectOutputStream out)
throws IOException {
// just so we're synchronized.
out.defaultWriteObject();
}
private synchronized void readObject(final ObjectInputStream in)
throws IOException, ClassNotFoundException {
// just so we're synchronized.
in.defaultReadObject();
}
/** This method is missing from jdk 1.0.x and below. JDK 1.1
includes this for us, but what the heck.*/
public boolean nextBoolean() {
return next(1) != 0;
}
/** This generates a coin flip with a probability <tt>probability</tt>
of returning true, else returning false. <tt>probability</tt> must
be between 0.0 and 1.0, inclusive. Not as precise a random real
event as nextBoolean(double), but twice as fast. To explicitly
use this, remember you may need to cast to float first. */
public boolean nextBoolean(final float probability) {
if (probability < 0.0f || probability > 1.0f) {
throw new IllegalArgumentException("probability must be between 0.0"
+ " and 1.0 inclusive.");
}
if (probability == 0.0f) {
return false; // fix half-open issues
} else if (probability == 1.0f) {
return true; // fix half-open issues
}
return nextFloat() < probability;
}
/** This generates a coin flip with a probability <tt>probability</tt>
of returning true, else returning false. <tt>probability</tt> must
be between 0.0 and 1.0, inclusive. */
public boolean nextBoolean(final double probability) {
if (probability < 0.0 || probability > 1.0) {
throw new IllegalArgumentException("probability must be between 0.0"
+ " and 1.0 inclusive.");
}
if (probability == 0.0) {
return false; // fix half-open issues
} else if (probability == 1.0) {
return true; // fix half-open issues
}
return nextDouble() < probability;
}
/** This method is missing from JDK 1.1 and below. JDK 1.2
includes this for us, but what the heck. */
public int nextInt(final int n) {
if (n <= 0) {
throw new IllegalArgumentException("n must be >= 0");
}
if ((n & -n) == n) {
return (int) ((n * (long) next(31)) >> 31);
}
int bits, val;
do {
bits = next(31);
val = bits % n;
} while (bits - val + (n - 1) < 0);
return val;
}
/** This method is for completness' sake.
Returns a long drawn uniformly from 0 to n-1. Suffice it to say,
n must be > 0, or an IllegalArgumentException is raised. */
public long nextLong(final long n) {
if (n <= 0) {
throw new IllegalArgumentException("n must be >= 0");
}
long bits, val;
do {
bits = (nextLong() >>> 1);
val = bits % n;
} while (bits - val + (n - 1) < 0);
return val;
}
/** A bug fix for versions of JDK 1.1 and below. JDK 1.2 fixes
this for us, but what the heck. */
public double nextDouble() {
return (((long) next(26) << 27) + next(27))
/ (double) (1L << 53);
}
/** A bug fix for versions of JDK 1.1 and below. JDK 1.2 fixes
this for us, but what the heck. */
public float nextFloat() {
return next(24) / ((float) (1 << 24));
}
/** A bug fix for all versions of the JDK. The JDK appears to
use all four bytes in an integer as independent byte values!
Totally wrong. I've submitted a bug report. */
public void nextBytes(final byte[] bytes) {
for (int x = 0; x < bytes.length; x++) {
bytes[x] = (byte) next(8);
}
}
/** For completeness' sake, though it's not in java.util.Random. */
public char nextChar() {
// chars are 16-bit UniCode values
return (char) (next(16));
}
/** For completeness' sake, though it's not in java.util.Random. */
public short nextShort() {
return (short) (next(16));
}
/** For completeness' sake, though it's not in java.util.Random. */
public byte nextByte() {
return (byte) (next(8));
}
/** A bug fix for all JDK code including 1.2. nextGaussian can theoretical
* ly
ask for the log of 0 and divide it by 0! See Java bug
<a href="http://developer.java.sun.com/developer/bugParade/bugs/4254501.h
* tml">
http://developer.java.sun.com/developer/bugParade/bugs/4254501.html</a>
*/
synchronized public double nextGaussian() {
if (__haveNextNextGaussian) {
__haveNextNextGaussian = false;
return __nextNextGaussian;
} else {
double v1, v2, s;
do {
v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0
v2 = 2 * nextDouble() - 1; // between -1.0 and 1.0
s = v1 * v1 + v2 * v2;
} while (s >= 1 || s == 0);
double multiplier = /* Strict*/ Math.sqrt(-2
* /* Strict*/ Math.log(s) / s);
__nextNextGaussian = v2 * multiplier;
__haveNextNextGaussian = true;
return v1 * multiplier;
}
}
}
java.lang.mathにはデフォルトの random メソッドがあります。
0.0 から 1.0 (0.0 <= n < 1.0) の間の double を返します。
これをさまざまなランダム値に変換する簡単なトリックを実行できます。
boolean coinFlip = (Math.random() >= 0.5);
int card = (int)(Math.random() * 52);
ただし、これにより、舞台裏で新しい java.util.Random() が作成されます。これは、回避しようとしていると思います。
ライブラリを使用したくない場合は、独自の実装を作成する必要がありますが、これはおそらくはるかに複雑になります。
時間を使用するとおっしゃいましたが、これは確かに数値を生成するのに役立ちますが、実際の目的では実際にはランダムではありません。何かのようなもの:
long betweenOneAndTen = 1 + (System.currentTimeMillis() % 10);
関数を使用する場合Math.random()
、クラスに依存することRandom
も何も初期化することもありません (少なくともそれはあなたの責任ではありません)。の呼び出しと--- の呼び出しSystem.currentTimeMillis()
に基本的な違いはありませんが、後者の方がパフォーマンスが高く、ランダムな値を返すのに適しています。System.nanoTime()
Math.random()