私のソリューションが興味深いと思うかもしれません。これは、コヒーレント ポイント ドリフト アルゴリズムの純粋な numpy実装です。
次に例を示します。
from functools import partial
from scipy.io import loadmat
import matplotlib.pyplot as plt
import numpy as np
import time
class RigidRegistration(object):
    def __init__(self, X, Y, R=None, t=None, s=None, sigma2=None, maxIterations=100, tolerance=0.001, w=0):
    if X.shape[1] != Y.shape[1]:
        raise 'Both point clouds must have the same number of dimensions!'
    self.X             = X
    self.Y             = Y
    (self.N, self.D)   = self.X.shape
    (self.M, _)        = self.Y.shape
    self.R             = np.eye(self.D) if R is None else R
    self.t             = np.atleast_2d(np.zeros((1, self.D))) if t is None else t
    self.s             = 1 if s is None else s
    self.sigma2        = sigma2
    self.iteration     = 0
    self.maxIterations = maxIterations
    self.tolerance     = tolerance
    self.w             = w
    self.q             = 0
    self.err           = 0
def register(self, callback):
    self.initialize()
    while self.iteration < self.maxIterations and self.err > self.tolerance:
        self.iterate()
        callback(X=self.X, Y=self.Y)
    return self.Y, self.s, self.R, self.t
def iterate(self):
    self.EStep()
    self.MStep()
    self.iteration = self.iteration + 1
def MStep(self):
    self.updateTransform()
    self.transformPointCloud()
    self.updateVariance()
def updateTransform(self):
    muX = np.divide(np.sum(np.dot(self.P, self.X), axis=0), self.Np)
    muY = np.divide(np.sum(np.dot(np.transpose(self.P), self.Y), axis=0), self.Np)
    self.XX = self.X - np.tile(muX, (self.N, 1))
    YY      = self.Y - np.tile(muY, (self.M, 1))
    self.A = np.dot(np.transpose(self.XX), np.transpose(self.P))
    self.A = np.dot(self.A, YY)
    U, _, V = np.linalg.svd(self.A, full_matrices=True)
    C = np.ones((self.D, ))
    C[self.D-1] = np.linalg.det(np.dot(U, V))
    self.R = np.dot(np.dot(U, np.diag(C)), V)
    self.YPY = np.dot(np.transpose(self.P1), np.sum(np.multiply(YY, YY), axis=1))
    self.s = np.trace(np.dot(np.transpose(self.A), self.R)) / self.YPY
    self.t = np.transpose(muX) - self.s * np.dot(self.R, np.transpose(muY))
def transformPointCloud(self, Y=None):
    if not Y:
        self.Y = self.s * np.dot(self.Y, np.transpose(self.R)) + np.tile(np.transpose(self.t), (self.M, 1))
        return
    else:
        return self.s * np.dot(Y, np.transpose(self.R)) + np.tile(np.transpose(self.t), (self.M, 1))
def updateVariance(self):
    qprev = self.q
    trAR     = np.trace(np.dot(self.A, np.transpose(self.R)))
    xPx      = np.dot(np.transpose(self.Pt1), np.sum(np.multiply(self.XX, self.XX), axis =1))
    self.q   = (xPx - 2 * self.s * trAR + self.s * self.s * self.YPY) / (2 * self.sigma2) + self.D * self.Np/2 * np.log(self.sigma2)
    self.err = np.abs(self.q - qprev)
    self.sigma2 = (xPx - self.s * trAR) / (self.Np * self.D)
    if self.sigma2 <= 0:
        self.sigma2 = self.tolerance / 10
def initialize(self):
    self.Y = self.s * np.dot(self.Y, np.transpose(self.R)) + np.repeat(self.t, self.M, axis=0)
    if not self.sigma2:
        XX = np.reshape(self.X, (1, self.N, self.D))
        YY = np.reshape(self.Y, (self.M, 1, self.D))
        XX = np.tile(XX, (self.M, 1, 1))
        YY = np.tile(YY, (1, self.N, 1))
        diff = XX - YY
        err  = np.multiply(diff, diff)
        self.sigma2 = np.sum(err) / (self.D * self.M * self.N)
    self.err  = self.tolerance + 1
    self.q    = -self.err - self.N * self.D/2 * np.log(self.sigma2)
def EStep(self):
    P = np.zeros((self.M, self.N))
    for i in range(0, self.M):
        diff     = self.X - np.tile(self.Y[i, :], (self.N, 1))
        diff    = np.multiply(diff, diff)
        P[i, :] = P[i, :] + np.sum(diff, axis=1)
    c = (2 * np.pi * self.sigma2) ** (self.D / 2)
    c = c * self.w / (1 - self.w)
    c = c * self.M / self.N
    P = np.exp(-P / (2 * self.sigma2))
    den = np.sum(P, axis=0)
    den = np.tile(den, (self.M, 1))
    den[den==0] = np.finfo(float).eps
    self.P   = np.divide(P, den)
    self.Pt1 = np.sum(self.P, axis=0)
    self.P1  = np.sum(self.P, axis=1)
    self.Np = np.sum(self.P1)
def visualize(X, Y, ax):
    plt.cla()
    ax.scatter(X[:,0] ,  X[:,1], color='red')
    ax.scatter(Y[:,0] ,  Y[:,1], color='blue')
    plt.draw()
    plt.pause(0.001)
def main():
    fish = loadmat('./data/fish.mat')
    X = fish['X'] # number-of-points x number-of-dimensions array of fixed points
    Y = fish['Y'] # number-of-points x number-of-dimensions array of moving points
    fig = plt.figure()
    fig.add_axes([0, 0, 1, 1])
    callback = partial(visualize, ax=fig.axes[0])
    reg = RigidRegistration(X, Y)
    reg.register(callback)
    plt.show()
if __name__ == '__main__':
main()