Rmpfrは、 mpfr_set_str ..を使用して文字列変換を実行できます。
val <- mpfr("1e309")
## 1 'mpfr' number of precision 17 bits
## [1] 9.999997e308
# set a precision (assume base 10)...
est_prec <- function(e) floor( e/log10(2) ) + 1
val <- mpfr("1e309", est_prec(309) )
## 1 'mpfr' number of precision 1027 bits
## [1]1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
.mpfr2bigz(val)
## Big Integer ('bigz') :
## [1] 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
# extract exponent from a scientific notation string
get_exp <- function( sci ) as.numeric( gsub("^.*e",'', sci) )
# Put it together
sci2bigz <- function( str ) {
.mpfr2bigz( mpfr( str, est_prec( get_exp( str ) ) ) )
}
val <- sci2bigz( paste0( format( Const("pi", 1027) ), "e309") )
identical( val, .mpfr2bigz( Const("pi",1027)*mpfr(10,1027)^309 ) )
## [1] TRUE
## Big Integer ('bigz') :
## [1] 3141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587004
より大きい数を格納する理由について.Machine$double.xmax
は、IEEE仕様の浮動小数点エンコーディングに関するドキュメント、R FAQ、およびウィキペディアがすべての専門用語に含まれていますが、用語を定義するだけで役立つと思います(を使用して?'.Machine'
)...
double.xmax
(最大の正規化浮動小数点数)=
(1 - double.neg.eps) * double.base ^ double.max.exp
ここで
double.neg.eps
(1-x!= 1のような小さな正の浮動小数点数x)=double.base ^ double.neg.ulp.digits
ここで
double.neg.ulp.digits
1 - double.base ^ i != 1
=次のような最大の負の整数
double.max.exp
=オーバーフローするdouble.baseの最小の正の累乗と
double.base
(浮動小数点表現の基数)= 2(バイナリの場合)。
どの有限浮動小数点数を別の浮動小数点数と区別できるかという観点から考えます。IEEE仕様では、binary64の数値の場合、指数に11ビットが使用されるため、最大指数はですが、オーバーフローする2^(11-1)-1=1023
最大指数は1024である必要があります。double.max.exp
# Maximum number of representations
# double.base ^ double.max.exp
base <- mpfr(2, 2048)
max.exp <- mpfr( 1024, 2048 )
# This is where the big part of the 1.79... comes from
base^max.exp
## 1 'mpfr' number of precision 2048 bits
## [1] 179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216
# Smallest definitive unit.
# Find the largest negative integer...
neg.ulp.digits <- -64; while( ( 1 - 2^neg.ulp.digits ) == 1 )
neg.ulp.digits <<- neg.ulp.digits + 1
neg.ulp.digits
## [1] -53
# It makes a real small number...
neg.eps <- base^neg.ulp.digits
neg.eps
## 1 'mpfr' number of precision 2048 bits
## [1] 1.11022302462515654042363166809082031250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000e-16
# Largest difinitive floating point number less than 1
# times the number of representations
xmax <- (1-neg.eps) * base^max.exp
xmax
## 1 'mpfr' number of precision 2048 bits
## [1] 179769313486231570814527423731704356798070567525844996598917476803157260780028538760589558632766878171540458953514382464234321326889464182768467546703537516986049910576551282076245490090389328944075868508455133942304583236903222948165808559332123348274797826204144723168738177180919299881250404026184124858368
identical( asNumeric(xmax), .Machine$double.xmax )
## [1] TRUE