19

私は topicmodels パッケージの LDA を使用しています。約 30,000 のドキュメントで実行し、30 のトピックを取得し、トピックの上位 10 語を取得しました。非常によく見えます。しかし、どのドキュメントがどのトピックに属しているかを最も高い確率で確認したいのですが、どうすればそれを行うことができますか?

myCorpus <- Corpus(VectorSource(userbios$bio))
docs <- userbios$twitter_id
myCorpus <- tm_map(myCorpus, tolower)
myCorpus <- tm_map(myCorpus, removePunctuation)
myCorpus <- tm_map(myCorpus, removeNumbers)
removeURL <- function(x) gsub("http[[:alnum:]]*", "", x)
myCorpus <- tm_map(myCorpus, removeURL)
myStopwords <- c("twitter", "tweets", "tweet", "tweeting", "account")

# remove stopwords from corpus
myCorpus <- tm_map(myCorpus, removeWords, stopwords('english'))
myCorpus <- tm_map(myCorpus, removeWords, myStopwords)


# stem words
# require(rJava) # needed for stemming function 
# library(Snowball) # also needed for stemming function 
# a <- tm_map(myCorpus, stemDocument, language = "english")

myDtm <- DocumentTermMatrix(myCorpus, control = list(wordLengths=c(2,Inf), weighting=weightTf))
myDtm2 <- removeSparseTerms(myDtm, sparse=0.85)
dtm <- myDtm2

library(topicmodels)

rowTotals <- apply(dtm, 1, sum)
dtm2 <- dtm[rowTotals>0]
dim(dtm2)
dtm_LDA <- LDA(dtm2, 30)
4

3 に答える 3

22

組み込みのデータセットを使用して、これはどうですか。これにより、どのドキュメントがどのトピックに属する可能性が最も高いかがわかります。

library(topicmodels)
data("AssociatedPress", package = "topicmodels")

k <- 5 # set number of topics
# generate model
lda <- LDA(AssociatedPress[1:20,], control = list(alpha = 0.1), k)
# now we have a topic model with 20 docs and five topics

# make a data frame with topics as cols, docs as rows and
# cell values as posterior topic distribution for each document
gammaDF <- as.data.frame(lda@gamma) 
names(gammaDF) <- c(1:k)
# inspect...
gammaDF
              1            2            3            4            5
1  8.979807e-05 8.979807e-05 9.996408e-01 8.979807e-05 8.979807e-05
2  8.714836e-05 8.714836e-05 8.714836e-05 8.714836e-05 9.996514e-01
3  9.261396e-05 9.996295e-01 9.261396e-05 9.261396e-05 9.261396e-05
4  9.995437e-01 1.140774e-04 1.140774e-04 1.140774e-04 1.140774e-04
5  3.573528e-04 3.573528e-04 9.985706e-01 3.573528e-04 3.573528e-04
6  5.610659e-05 5.610659e-05 5.610659e-05 5.610659e-05 9.997756e-01
7  9.994345e-01 1.413820e-04 1.413820e-04 1.413820e-04 1.413820e-04
8  4.286702e-04 4.286702e-04 4.286702e-04 9.982853e-01 4.286702e-04
9  3.319338e-03 3.319338e-03 9.867226e-01 3.319338e-03 3.319338e-03
10 2.034781e-04 2.034781e-04 9.991861e-01 2.034781e-04 2.034781e-04
11 4.810342e-04 9.980759e-01 4.810342e-04 4.810342e-04 4.810342e-04
12 2.651256e-04 9.989395e-01 2.651256e-04 2.651256e-04 2.651256e-04
13 1.430945e-04 1.430945e-04 1.430945e-04 9.994276e-01 1.430945e-04
14 8.402940e-04 8.402940e-04 8.402940e-04 9.966388e-01 8.402940e-04
15 8.404830e-05 9.996638e-01 8.404830e-05 8.404830e-05 8.404830e-05
16 1.903630e-04 9.992385e-01 1.903630e-04 1.903630e-04 1.903630e-04
17 1.297372e-04 1.297372e-04 9.994811e-01 1.297372e-04 1.297372e-04
18 6.906241e-05 6.906241e-05 6.906241e-05 9.997238e-01 6.906241e-05
19 1.242780e-04 1.242780e-04 1.242780e-04 1.242780e-04 9.995029e-01
20 9.997361e-01 6.597684e-05 6.597684e-05 6.597684e-05 6.597684e-05


# Now for each doc, find just the top-ranked topic   
toptopics <- as.data.frame(cbind(document = row.names(gammaDF), 
  topic = apply(gammaDF,1,function(x) names(gammaDF)[which(x==max(x))])))
# inspect...
toptopics   
       document topic
1         1     2
2         2     5
3         3     1
4         4     4
5         5     4
6         6     5
7         7     2
8         8     4
9         9     1
10       10     2
11       11     3
12       12     1
13       13     1
14       14     2
15       15     1
16       16     4
17       17     4
18       18     3
19       19     4
20       20     3

それはあなたがやりたいことですか?

この回答のヒント:https ://stat.ethz.ch/pipermail/r-help/2010-August/247706.html

于 2013-02-14T21:39:58.397 に答える
1
ldaGibbs5 <- LDA(dtm,k,method="Gibbs")

#get topics
ldaGibbs5.topics <- as.matrix(topics(ldaGibbs5))
write.csv(ldaGibbs5.topics,file=paste("LDAGibbs",k,"DocsToTopics.csv"))

#get top 10 terms in each topic
ldaGibbs5.terms <- as.matrix(terms(ldaGibbs5,10))
write.csv(ldaGibbs5.terms,file=paste("LDAGibbs",k,"TopicsToTerms.csv"))

#get probability of each topic in each doc
topicProbabilities <- as.data.frame(ldaGibbs5@gamma)
write.csv(topicProbabilities,file=paste("LDAGibbs",k,"TopicProbabilities.csv"))
于 2016-10-21T19:11:56.150 に答える