私は主にマルチプロセッシングの練習と argparse の使い方を学ぶために、これに挑戦しました。
マシンに十分なRAMがない場合に備えて、これには約4〜5ギガのRAMが必要でした.
python euler.py -l 50000000 -n 100 -p 8
Took 5.836833333969116 minutes
The largest product of 100 consecutive numbers is: a very large number
コマンドラインで python euler.py -h と入力すると、次のようになります。
usage: euler.py [-h] -l L [L ...] -n N [-p P]
Calculates the product of consecutive numbers and return the largest product.
optional arguments:
-h, --help show this help message and exit
-l L [L ...] A single number or list of numbers, where each # is seperated
by a space
-n N A number that specifies how many consecutive numbers should be
multiplied together.
-p P Number of processes to create. Optional, defaults to the # of
cores on the pc.
そしてコード:
"""A multiprocess iplementation for calculation the maximum product of N consecutive
numbers in a given range (list of numbers)."""
import multiprocessing
import math
import time
import operator
from functools import reduce
import argparse
def euler8(alist,lenNums):
"""Returns the largest product of N consecutive numbers in a given range"""
return max(reduce(operator.mul, alist[i:i+lenNums]) for i in range(len(alist)))
def split_list_multi(listOfNumbers,numLength,threads):
"""Split a list into N parts where N is the # of processes."""
fullLength = len(listOfNumbers)
single = math.floor(fullLength/threads)
results = {}
counter = 0
while counter < threads:
if counter == (threads-1):
temp = listOfNumbers[single*counter::]
if counter == 0:
results[str(counter)] = listOfNumbers[single*counter::]
else:
prevListIndex = results[str(counter-1)][-int('{}'.format(numLength-1))::]
newlist = prevListIndex + temp
results[str(counter)] = newlist
else:
temp = listOfNumbers[single*counter:single*(counter+1)]
if counter == 0:
newlist = temp
else:
prevListIndex = results[str(counter-1)][-int('{}'.format(numLength-1))::]
newlist = prevListIndex + temp
results[str(counter)] = newlist
counter += 1
return results,threads
def worker(listNumbers,number,output):
"""A worker. Used to run seperate processes and put the results in the queue"""
result = euler8(listNumbers,number)
output.put(result)
def main(listOfNums,lengthNumbers,numCores=multiprocessing.cpu_count()):
"""Runs the module.
listOfNums must be a list of ints, or single int
lengthNumbers is N (an int) where N is the # of consecutive numbers to multiply together
numCores (an int) defaults to however many the cpu has, can specify a number if you choose."""
if isinstance(listOfNums,list):
if len(listOfNums) == 1:
valuesToSplit = [i for i in range(int(listOfNums[0]))]
else:
valuesToSplit = [int(i) for i in listOfNums]
elif isinstance(listOfNums,int):
valuesToSplit = [i for i in range(listOfNums)]
else:
print('First arg must be a number or a list of numbers')
split = split_list_multi(valuesToSplit,lengthNumbers,numCores)
done_queue = multiprocessing.Queue()
jobs = []
startTime = time.time()
for num in range(split[1]):
numChunks = split[0][str(num)]
thread = multiprocessing.Process(target=worker, args=(numChunks,lengthNumbers,done_queue))
jobs.append(thread)
thread.start()
resultlist = []
for i in range(split[1]):
resultlist.append(done_queue.get())
for j in jobs:
j.join()
resultlist = max(resultlist)
endTime = time.time()
totalTime = (endTime-startTime)/60
print("Took {} minutes".format(totalTime))
return print("The largest product of {} consecutive numbers is: {}".format(lengthNumbers, resultlist))
if __name__ == '__main__':
#To call the module from the commandline with arguments
parser = argparse.ArgumentParser(description="""Calculates the product of consecutive numbers \
and return the largest product.""")
parser.add_argument('-l', nargs='+', required=True,
help='A single number or list of numbers, where each # is seperated by a space')
parser.add_argument('-n', required=True, type=int,
help = 'A number that specifies how many consecutive numbers should be \
multiplied together.')
parser.add_argument('-p', default=multiprocessing.cpu_count(), type=int,
help='Number of processes to create. Optional, defaults to the # of cores on the pc.')
args = parser.parse_args()
main(args.l, args.n, args.p)