「CUDAbyexample」という本からCUDAを学んでいます。第4章には、Juliaフラクタルを生成するデモがあります。ショーケースはCPUとGPUの両方のバージョンを示しています。両方の場合の実行速度を確認する時間を追加することにしました。驚いたことに、CPUバージョンはGPUの3倍の速度で実行されます。
CPU Julia生成の合計時間:
745ミリ秒。
GPU Julia生成の合計時間:
2456ミリ秒。
では、何が起こっているのでしょうか?少なくともCUDAカーネルコードから、実行が並列であり、それぞれが1000x1000解像度の最終画像のピクセルを計算する1000ブロックに分散されていることは明らかです。
実装のソースコードは次のとおりです。
#define N 10
#define DIM 1000
typedef unsigned char byte;
struct cuComplex {
float r;
float i;
__host__ __device__ cuComplex( float a, float b ) : r(a), i(b) {}
__host__ __device__ float magnitude2( void ) {
return r * r + i * i;
}
__host__ __device__ cuComplex operator*(const cuComplex& a) {
return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);
}
__host__ __device__ cuComplex operator+(const cuComplex& a) {
return cuComplex(r+a.r, i+a.i);
}
};
__device__ int juliaGPU(int x , int y){
const float scale =1.3;
float jx = scale * (float)(DIM/2 -x)/(DIM/2);
float jy= scale *(float)(DIM/2 -y)/(DIM/2);
cuComplex c(-0.8 ,0.156);
cuComplex a(jx ,jy);
int i = 0;
for(i=0; i <200;i++){
a = a * a +c;
if(a.magnitude2() >1000){
return 0;
}
}
return 1;
}
__global__ void kernelGPU(byte *ptr){
int x = blockIdx.x;
int y = blockIdx.y;
int offset =x + y * gridDim.x;
int juliaValue =juliaGPU(x , y);
ptr[offset * 4 + 0]=255 * juliaValue;
ptr[offset * 4 + 1]=0;
ptr[offset * 4 + 2]=0;
ptr[offset * 4 + 3]=255 ;
}
struct DataBlock {
unsigned char *dev_bitmap;
};
void juliaGPUTestSample(){
DataBlock data;
CPUBitmap bitmap(DIM,DIM);
byte *dev_bitmap; //memory on GPU
HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap , bitmap.image_size()) );
data.dev_bitmap =dev_bitmap;
dim3 grid(DIM,DIM);
int starTime=glutGet(GLUT_ELAPSED_TIME);
kernelGPU<<<grid ,1 >>>(dev_bitmap);
HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr() , dev_bitmap ,bitmap.image_size() ,cudaMemcpyDeviceToHost ) );
int endTime=glutGet(GLUT_ELAPSED_TIME)-starTime;
printf("Total time %d\n:" ,endTime);
HANDLE_ERROR(cudaFree(dev_bitmap));
bitmap.display_and_exit();
}
int main(void){
juliaGPUTestSample();
return 1;
}
これがCPUバージョンです:
///"cuComplex"構造体は上から同じです。
int julia (int x , int y){
const float scale = 1.3;
float jx = scale * (float)(DIM/2 -x)/(DIM/2);
float jy = scale * (float)(DIM/2 -y)/(DIM/2);
cuComplex c(-0.8 ,0.156);
cuComplex a(jx ,jy);
int i = 0;
for(i=0; i <200;i++){
a = a * a +c;
if(a.magnitude2() >1000){
return 0;
}
}
return 1;
}
void kernel(unsigned char *ptr){
for(int y = 0 ; y <DIM ;++y){
for(int x = 0 ; x <DIM ; ++x){
int offset =x + y * DIM;
int juliaValue = julia(x , y);
ptr[offset * 4 + 0 ] = juliaValue * 125;
ptr[offset * 4 + 1 ] = juliaValue * x;
ptr[offset * 4 + 2 ] = juliaValue * y;
ptr[offset * 4 + 3 ] = 255 ;
}
}
}
void juliaCPUTestSample(){
CPUBitmap bitmap(DIM ,DIM);
unsigned char *ptr = bitmap.get_ptr();
int starTime=glutGet(GLUT_ELAPSED_TIME);
kernel(ptr);
int endTime=glutGet(GLUT_ELAPSED_TIME)-starTime;
printf("Total time %d\n:" ,endTime);
bitmap.display_and_exit();
}
システム構成の更新:
Windows764ビット
CPU-Intel i7 -3770CPU 3.40GHz、16GB RAM
GPU-NVidia Quadro 4000