これは少し長いショットですが、誰かがこれを見ることができるのだろうか. ここで線形回帰のバッチ勾配降下を正しく行っていますか? これは、単一の独立変数と切片に対して期待される答えを提供しますが、複数の独立変数に対しては提供しません。
/**
 * (using Colt Matrix library)
 * @param alpha Learning Rate
 * @param thetas Current Thetas
 * @param independent 
 * @param dependent
 * @return new Thetas
 */
public DoubleMatrix1D descent(double         alpha,
                              DoubleMatrix1D thetas,
                              DoubleMatrix2D independent,
                              DoubleMatrix1D dependent ) {
    Algebra algebra     = new Algebra();
    // ALPHA*(1/M) in one.
    double  modifier    = alpha / (double)independent.rows();
    //I think this can just skip the transpose of theta.
    //This is the result of every Xi run through the theta (hypothesis fn)
    //So each Xj feature is multiplied by its Theata, to get the results of the hypothesis
    DoubleMatrix1D hypothesies = algebra.mult( independent, thetas );
    //hypothesis - Y  
    //Now we have for each Xi, the difference between predictect by the hypothesis and the actual Yi
    hypothesies.assign(dependent, Functions.minus);
    //Transpose Examples(MxN) to NxM so we can matrix multiply by hypothesis Nx1
    DoubleMatrix2D transposed = algebra.transpose(independent);
    DoubleMatrix1D deltas     = algebra.mult(transposed, hypothesies );
    // Scale the deltas by 1/m and learning rate alhpa.  (alpha/m)
    deltas.assign(Functions.mult(modifier));
    //Theta = Theta - Deltas
    thetas.assign( deltas, Functions.minus );
    return( thetas );
}