25

このように階層的にインデックス付けされたデータフレームを定義すると、次のようになります。

import itertools
import pandas as pd
import numpy as np
a = ('A', 'B')
i = (0, 1, 2)
b = (True, False)
idx = pd.MultiIndex.from_tuples(list(itertools.product(a, i, b)),
                                names=('Alpha', 'Int', 'Bool'))
df = pd.DataFrame(np.random.randn(len(idx), 7), index=idx,
                  columns=('I', 'II', 'III', 'IV', 'V', 'VI', 'VII'))

内容は次のようになります。

In [19]: df
Out[19]: 
                        I        II       III        IV         V        VI       VII
Alpha Int Bool                                                                       
A     0   True  -0.462924  1.210442  0.306737  0.325116 -1.320084 -0.831699  0.892865
          False -0.850570 -0.949779  0.022074 -0.205575 -0.684794 -0.214307 -1.133833
      1   True   0.603602  1.387020 -0.830780 -1.242000 -0.321938  0.484271  0.171738
          False -1.591730  1.282136  0.095159 -1.239882  0.760880 -0.606444 -0.485957
      2   True  -1.346883  1.650247 -1.476443  2.092067  1.344689  0.177083  0.100844
          False  0.001407 -1.127299 -0.417828  0.143595 -0.277838 -0.478262 -0.350906
B     0   True   0.722781 -1.093182  0.237536  0.457614 -2.500885  0.338257  0.009128
          False  0.321022  0.419357  1.161140 -1.371035  1.093696  0.250517 -1.125612
      1   True   0.237441  1.739933  0.029653  0.327823 -0.384647  1.523628 -0.009053
          False -0.459148 -0.598577 -0.593486 -0.607447  1.478399  0.504028 -0.329555
      2   True  -0.583052 -0.986493 -0.057788 -0.639798  1.400311  0.076471 -0.212513
          False  0.896755  2.583520  1.520151  2.367336 -1.084994 -1.233548 -2.414215

特定の列に対応するデータを抽出する方法を知っています。例:列の場合'VII'

In [20]: df['VII']
Out[20]: 
Alpha  Int  Bool 
A      0    True     0.892865
            False   -1.133833
       1    True     0.171738
            False   -0.485957
       2    True     0.100844
            False   -0.350906
B      0    True     0.009128
            False   -1.125612
       1    True    -0.009053
            False   -0.329555
       2    True    -0.212513
            False   -2.414215
Name: VII

次の一連の基準に一致するデータを抽出するにはどうすればよいですか。

  1. Alpha=='B'
  2. Alpha=='B'Bool==False
  3. Alpha=='B'、、Bool==False'I'
  4. Alpha=='B'、、Bool==False'I'および'III'
  5. Alpha=='B'、、Bool==False'I'、、およびそれ以降'III'のすべての列'V'
  6. Intでも

(ところで、私はrtfmを何度もやりましたが、本当に理解できないと思います。)

4

2 に答える 2

34

xsはあなたが望むものかもしれません。次にいくつかの例を示します。

In [63]: df.xs(('B',), level='Alpha')
Out[63]:
                  I        II       III        IV         V        VI       VII
Int Bool                                                                       
0   True  -0.430563  0.139969 -0.356883 -0.574463 -0.107693 -1.030063  0.271250
    False  0.334960 -0.640764 -0.515756 -0.327806 -0.006574  0.183520  1.397951
1   True  -0.450375  1.237018  0.398290  0.246182 -0.237919  1.372239 -0.805403
    False -0.064493  0.967132 -0.674451  0.666691 -0.350378  1.721682 -0.791897
2   True   0.143154 -0.061543 -1.157361  0.864847 -0.379616 -0.762626  0.645582
    False -3.253589  0.729562 -0.839622 -1.088309  0.039522  0.980831 -0.113494

In [64]: df.xs(('B', False), level=('Alpha', 'Bool'))
Out[64]:
            I        II       III        IV         V        VI       VII
Int                                                                      
0    0.334960 -0.640764 -0.515756 -0.327806 -0.006574  0.183520  1.397951
1   -0.064493  0.967132 -0.674451  0.666691 -0.350378  1.721682 -0.791897
2   -3.253589  0.729562 -0.839622 -1.088309  0.039522  0.980831 -0.113494 

編集

最後の要件については、チェーンget_level_valuesしてisin

インデックスの偶数値を取得します(これを行う他の方法も)

In [87]: ix_vals = set(i for _, i, _ in df.index if i % 2 == 0)
         ix_vals

Out[87]: set([0L, 2L])

これらをで使用するisin

In [89]: ix = df.index.get_level_values('Int').isin(ix_vals)
In [90]: df[ix]
Out[90]:                I        II       III        IV         V        VI       VII
Alpha Int Bool                                                                       
A     0   True  -1.315409  1.203800  0.330372 -0.295718 -0.679039  1.402114  0.778572
          False  0.008189 -0.104372  0.419110  0.302978 -0.880262 -1.037645 -0.264265
      2   True  -2.414290  0.896990  0.986167 -0.527074  0.550753 -0.302920  0.228165
          False  1.275831  0.448089 -0.635874 -0.733855 -0.747774 -1.108976  0.151474
B     0   True  -0.430563  0.139969 -0.356883 -0.574463 -0.107693 -1.030063  0.271250
          False  0.334960 -0.640764 -0.515756 -0.327806 -0.006574  0.183520  1.397951
      2   True   0.143154 -0.061543 -1.157361  0.864847 -0.379616 -0.762626  0.645582
          False -3.253589  0.729562 -0.839622 -1.088309  0.039522  0.980831 -0.113494 
于 2013-02-19T18:22:12.957 に答える
2

pd.IndexSliceを直感的な方法で使用できます(この回答から着想を得ています)。いくつかの例(パンダ0.18.0を使用):

df.sort_index(inplace=True)
idx = pd.IndexSlice
evens = np.arange(2,max(df.index.levels[1])+1,2)

df.loc[idx[['A','B'],evens,True],['III','V']]
Out[]: 
                     III         V
Alpha Int Bool                    
A     2   True -1.041243 -0.561155
B     2   True  0.381918 -0.148990

df.loc[idx[:,evens,:],:]
Out[]: 
                        I        II       III        IV         V        VI  \
Alpha Int Bool                                                                
A     2   False  0.791142  0.333383  0.089767 -0.584465  0.295676 -1.323792   
          True  -1.023160 -0.442004 -1.041243  1.613184 -0.561155  0.397923   
B     2   False  0.383229 -0.052715 -0.214347 -2.041429 -1.101059 -0.374035   
          True  -0.183386 -0.855367  0.381918 -0.261106 -0.148990  0.621537   

                      VII  
Alpha Int Bool             
A     2   False  0.717301  
          True  -0.133701  
B     2   False  0.166314  
          True   0.517513
于 2016-04-14T05:29:19.000 に答える