GavinSimpsonの変更の提案がstats:::simulate.lm
実行可能なものであることを示す。
## Modify stats:::simulate.lm by inserting some tracing code immediately
## following the line that reads "ftd <- fitted(object)"
trace(what = stats:::simulate.lm,
tracer = quote(ftd <- list(...)[["XX"]]),
at = list(6))
## Prepare the data and 'fit' object
df <- data.frame(x =x<-1:10, y = 1.5*x + rnorm(length(x)))
fit <- lm(y ~ x, data = df)
## Define new covariate values and compute their predicted/fitted values
newX <- 8:1
newFitted <- predict(fit, newdata = data.frame(x = newX))
## Pass in fitted via the argument 'XX'
simulate(fit, nsim = 4, XX = newFitted)
# sim_1 sim_2 sim_3 sim_4
# 1 11.0910257 11.018211 10.95988582 13.398902
# 2 12.3802903 10.589807 10.54324607 11.728212
# 3 8.0546746 9.925670 8.14115433 9.039556
# 4 6.4511230 8.136040 7.59675948 7.892622
# 5 6.2333459 3.131931 5.63671024 7.645412
# 6 3.7449859 4.686575 3.45079655 5.324567
# 7 2.9204519 3.417646 2.05988078 4.453807
# 8 -0.5781599 -1.799643 -0.06848592 0.926204
それは機能しますが、これはよりクリーンな(そしておそらくより良い)アプローチです:
## A function for simulating at new x-values
simulateX <- function(object, nsim = 1, seed = NULL, X, ...) {
object$fitted.values <- predict(object, X)
simulate(object = object, nsim = nsim, seed = seed, ...)
}
## Prepare example data and a fit object
df <- data.frame(x =x<-1:10, y = 1.5*x + rnorm(length(x)))
fit <- lm(y ~ x, data = df)
## Supply new x-values in a data.frame of the form expected by
## the newdata= argument of predict.lm()
newX <- data.frame(x = 8:1)
## Try it out
simulateX(fit, nsim = 4, X = newX)
# sim_1 sim_2 sim_3 sim_4
# 1 11.485024 11.901787 10.483908 10.818793
# 2 10.990132 11.053870 9.181760 10.599413
# 3 7.899568 9.495389 10.097445 8.544523
# 4 8.259909 7.195572 6.882878 7.580064
# 5 5.542428 6.574177 4.986223 6.289376
# 6 5.622131 6.341748 4.929637 4.545572
# 7 3.277023 2.868446 4.119017 2.609147
# 8 1.296182 1.607852 1.999305 2.598428