1

四面体の 4 つの頂点の 1 つが原点にあり、他の 3 つがベクトルuv、およびwの終点にあるとします。ベクトルuvが既知で、 uvvwwuの間の角度も既知である場合、 wの閉形式の解があるように見えます: ベクトルを回転させることによって形成される 2 つの円錐の交点u軸を中心としたuwの角度で、 vwでベクトルを回転させることによってv軸周りの角度。

数日で閉じた形式のソリューションを思いつくことができませんでしたが、3D ジオメトリの経験が不足しているためであり、より経験のある人が役立つ提案をしてくれることを願っています.

4

2 に答える 2

0

頂点wの位置を計算するのに十分なデータがありません。ただし、単位ベクトルwを見つけることは可能です(存在する場合)。スカラー積のプロパティを使用して連立方程式を解くだけです(単位(正規化)ベクトルvのコンポーネントとして(vx、vy、vz)を使用しました)

vx*wx+vy*wy+vz*wz=Cos(v,w angle)
ux*wx+uy*wy+uz*wz=Cos(u,w angle)
wx^2+wy^2+wz^2=1  //unit vector

このシステムは私たちに与えることができます:解決策はありません(コーンは重なりません)。1つの解決策(コーンに触れる); 2つのソリューション(錐体の表面が交差する2つの光線)

于 2013-02-21T03:42:48.177 に答える