図形をいじると、達成しようとしていることがより明確になる場合がありますが、あまり考えずにこの種の問題を処理する最も簡単な方法は、次のnp.einsum
とおりです。
In [5]: np.einsum('ij, jkl', M, a)
Out[5]:
array([[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[ 10, 11, 12, 13, 14],
[ 15, 16, 17, 18, 19]],
[[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0]],
[[-40, -41, -42, -43, -44],
[-45, -46, -47, -48, -49],
[-50, -51, -52, -53, -54],
[-55, -56, -57, -58, -59]]])
さらに、多くの場合、パフォーマンス ボーナスが付属しています。
In [17]: a = np.random.randint(256, size=(3, 1000, 2000))
In [18]: %timeit np.dot(M, a.swapaxes(0,1))
10 loops, best of 3: 116 ms per loop
In [19]: %timeit np.einsum('ij, jkl', M, a)
10 loops, best of 3: 60.7 ms per loop
EDIT einsum
は非常に強力なブードゥーです。次のように、OPが下のコメントで要求することもできます。
>>> a = np.arange(60).reshape((3,4,5))
>>> M = np.array([[1,0,0], [0,0,0], [0,0,-1]])
>>> M = M.reshape((3,3,1,1)).repeat(4,axis=2).repeat(5,axis=3)
>>> np.einsum('ijkl,jkl->ikl', M, b)
array([[[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[ 10, 11, 12, 13, 14],
[ 15, 16, 17, 18, 19]],
[[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0]],
[[-40, -41, -42, -43, -44],
[-45, -46, -47, -48, -49],
[-50, -51, -52, -53, -54],
[-55, -56, -57, -58, -59]]])