面/頂点の特定のリストから最小、最大、平均を計算する必要があります。Numpy を使用してこのコンピューティングを最適化しようとしましたが、成功しませんでした。
これが私のテストケースです:
#!/usr/bin/python
# -*- coding: iso-8859-15 -*-
'''
Module Started 22 févr. 2013
@note: test case comparaison numpy vs python
@author: Python4D/damien
'''
import numpy as np
import time
def Fnumpy(vertices):
np_vertices=np.array(vertices)
_x=np_vertices[:,:,0]
_y=np_vertices[:,:,1]
_z=np_vertices[:,:,2]
_min=[np.min(_x),np.min(_y),np.min(_z)]
_max=[np.max(_x),np.max(_y),np.max(_z)]
_mean=[np.mean(_x),np.mean(_y),np.mean(_z)]
return _mean,_max,_min
def Fpython(vertices):
list_x=[item[0] for sublist in vertices for item in sublist]
list_y=[item[1] for sublist in vertices for item in sublist]
list_z=[item[2] for sublist in vertices for item in sublist]
taille=len(list_x)
_mean=[sum(list_x)/taille,sum(list_y)/taille,sum(list_z)/taille]
_max=[max(list_x),max(list_y),max(list_z)]
_min=[min(list_x),min(list_y),min(list_z)]
return _mean,_max,_min
if __name__=="__main__":
vertices=[[[1.1,2.2,3.3,4.4]]*4]*1000000
_t=time.clock()
print ">>NUMPY >>{} for {}s.".format(Fnumpy(vertices),time.clock()-_t)
_t=time.clock()
print ">>PYTHON>>{} for {}s.".format(Fpython(vertices),time.clock()-_t)
結果は次のとおりです。
でこぼこ:
([1.1000000000452519, 2.2000000000905038, 3.3000000001880174], [1.1000000000000001, 2.2000000000000002, 3.2999999999999998], [1.1000000000000001, 2.2000000000000002, 3.2999999999999998]) for 27.327068618s.
パイソン:
([1.100000000045252, 2.200000000090504, 3.3000000001880174], [1.1, 2.2, 3.3], [1.1, 2.2, 3.3]) 1.81366938593s.
Pure Python は Numpy よりも 15 倍高速です。