データフレーム用
In [2]: df = pd.DataFrame({'Name': ['foo', 'bar'] * 3,
...: 'Rank': np.random.randint(0,3,6),
...: 'Val': np.random.rand(6)})
...: df
Out[2]:
Name Rank Val
0 foo 0 0.299397
1 bar 0 0.909228
2 foo 0 0.517700
3 bar 0 0.929863
4 foo 1 0.209324
5 bar 2 0.381515
名前とランクでグループ化し、おそらく集計値を取得することに興味があります
In [3]: group = df.groupby(['Name', 'Rank'])
In [4]: agg = group.agg(sum)
In [5]: agg
Out[5]:
Val
Name Rank
bar 0 1.839091
2 0.381515
foo 0 0.817097
1 0.209324
df
しかし、その行のグループ番号を含む元のフィールドを取得したいと思います。
In [13]: df['Group_id'] = [2, 0, 2, 0, 3, 1]
In [14]: df
Out[14]:
Name Rank Val Group_id
0 foo 0 0.299397 2
1 bar 0 0.909228 0
2 foo 0 0.517700 2
3 bar 0 0.929863 0
4 foo 1 0.209324 3
5 bar 2 0.381515 1
パンダでこれを行う良い方法はありますか?
私はpythonでそれを得ることができます、
In [16]: from itertools import count
In [17]: c = count()
In [22]: group.transform(lambda x: c.next())
Out[22]:
Val
0 2
1 0
2 2
3 0
4 3
5 1
しかし、大きなデータフレームではかなり遅いので、これを行うためのより良い組み込みのパンダの方法があるかもしれないと考えました。