5

libsvm バージョン 3.16 を使用しています。Matlab でいくつかのトレーニングを行い、モデルを作成しました。ここで、このモデルをディスクに保存し、このモデルを C++ プログラムにロードしたいと考えています。これまでのところ、次の代替案を見つけました。

  1. この回答は、このWeb サイトに基づいた C++ からモデルを保存する方法を説明しています。正確には必要なものではありませんが、適応させることができます。(これには開発時間が必要です)。
  2. Matlab で最適なトレーニング パラメーター (カーネル、C) を見つけ、すべてを C++ で再トレーニングすることができました。(パラメーターを変更するたびに C++ でトレーニングを行う必要があります。スケーラブルではありません)。

したがって、これらのオプションはどちらも満足できるものではありません。

誰にもアイデアはありますか?

4

2 に答える 2

2

モデルを直接保存する良い方法が見つからなかったため、私の解決策は C++ で再トレーニングすることでした。これが私のコードです。それを適応させ、少しきれいにする必要があります。あなたがしなければならない最大の変更は、私のsvm_parameterように値をハードコーディングしないことです。に置き換える必要もありFilePathますstd::string。SOでここにコピー、貼り付け、小さな編集を行っているため、書式設定は完全ではありません:

次のように使用します。

    auto targetsPath = FilePath("targets.txt");
    auto observationsPath = FilePath("observations.txt");

    auto targetsMat = MatlabMatrixFileReader::Read(targetsPath, ',');
    auto observationsMat = MatlabMatrixFileReader::Read(observationsPath, ',');
    auto v = MiscVector::ConvertVecOfVecToVec(targetsMat);
    auto model = SupportVectorRegressionModel{ observationsMat, v };

    std::vector<double> observation{ { // 32 feature observation
        0.883575729725847,0.919446119013878,0.95359403450317,
        0.968233630936732,0.91891307107125,0.887897763183844,
        0.937588566544751,0.920582702918882,0.888864454119387,
        0.890066735260163,0.87911085669864,0.903745573664995,
        0.861069296586979,0.838606194934074,0.856376230548304,
        0.863011311537075,0.807688936997926,0.740434984165146,
        0.738498042748759,0.736410940165691,0.697228384912424,
        0.608527698289016,0.632994967880269,0.66935784966765,
        0.647761430696238,0.745961037635717,0.560761134660957,
        0.545498063585615,0.590854855113663,0.486827902942118,
        0.187128866890822,- 0.0746523069562551
    } };

    double prediction = model.Predict(observation);

miscvector.h

    static vector<double> ConvertVecOfVecToVec(const vector<vector<double>> &mat)
    {
        vector<double> targetsVec;
        targetsVec.reserve(mat.size());
        for (size_t i = 0; i < mat.size(); i++)
        {
            targetsVec.push_back(mat[i][0]);
        }
        return targetsVec;
    }

libsvmtargetobjectconvertor.h

#pragma once

#include "machinelearning.h"

struct svm_node;

class LibSvmTargetObservationConvertor
{
public:
    svm_node ** LibSvmTargetObservationConvertor::ConvertObservations(const vector<MlObservation> &observations, size_t numFeatures) const
{
    svm_node **svmObservations = (svm_node **)malloc(sizeof(svm_node *) * observations.size());
    for (size_t rowI = 0; rowI < observations.size(); rowI++)
    {
        svm_node *row = (svm_node *)malloc(sizeof(svm_node) * numFeatures);
        for (size_t colI = 0; colI < numFeatures; colI++)
        {
            row[colI].index = colI;
            row[colI].value = observations[rowI][colI];
        }
        row[numFeatures].index = -1; // apparently needed
        svmObservations[rowI] = row;
    }
    return svmObservations;
}

svm_node* LibSvmTargetObservationConvertor::ConvertMatToSvmNode(const MlObservation &observation) const
{
    size_t numFeatures = observation.size();
    svm_node *obsNode = (svm_node *)malloc(sizeof(svm_node) * numFeatures);
    for (size_t rowI = 0; rowI < numFeatures; rowI++)
    {
        obsNode[rowI].index = rowI;
        obsNode[rowI].value = observation[rowI];
    }
    obsNode[numFeatures].index = -1; // apparently needed
    return obsNode;
}
};

machinelearning.h

#pragma once

#include <vector>
using std::vector;

using MlObservation = vector<double>;
using MlTarget = double;

//machinelearningmodel.h
#pragma once

#include <vector>
#include "machinelearning.h"
class MachineLearningModel
{
public:
    virtual ~MachineLearningModel() {}
    virtual double Predict(const MlObservation &observation) const = 0;
};

matlabmatrixfilereader.h

#pragma once

#include <vector>
using std::vector;

class FilePath;
// Matrix created with command:
// dlmwrite('my_matrix.txt', somematrix, 'delimiter', ',', 'precision', 15);
// In these files, each row is a matrix row. Commas separate elements on a row.
// There is no space at the end of a row. There is a blank line at the bottom of the file.
// File format:
// 0.4,0.7,0.8
// 0.9,0.3,0.5
// etc.
static class MatlabMatrixFileReader
{
public:
    static vector<vector<double>> Read(const FilePath &asciiFilePath, char delimiter)
{

    vector<vector<double>> values;
    vector<double> valueline;
    std::ifstream fin(asciiFilePath.Path());
    string item, line;
    while (getline(fin, line))
    {
        std::istringstream in(line);

        while (getline(in, item, delimiter))
        {
            valueline.push_back(atof(item.c_str()));
        }           
        values.push_back(valueline);
        valueline.clear();
    }
    fin.close();
    return values;
}

};

supportvectorregressionmodel.h

#pragma once

#include <vector>
using std::vector;
#include "machinelearningmodel.h"

#include "svm.h" // libsvm

class FilePath;

class SupportVectorRegressionModel : public MachineLearningModel
{
public:
    SupportVectorRegressionModel::~SupportVectorRegressionModel()
{
    svm_free_model_content(model_);
    svm_destroy_param(&param_);
    svm_free_and_destroy_model(&model_);
}

SupportVectorRegressionModel::SupportVectorRegressionModel(const vector<MlObservation>& observations, const vector<MlTarget>& targets)
{
    // assumes all observations have same number of features
    size_t numFeatures = observations[0].size();

    //setup targets
    //auto v = ConvertVecOfVecToVec(targetsMat);
    double *targetsPtr = const_cast<double *>(&targets[0]); // why aren't the targets const?

    LibSvmTargetObservationConvertor conv;
    svm_node **observationsPtr = conv.ConvertObservations(observations, numFeatures);

    // setup observations
    //svm_node **observations = BuildObservations(observationsMat, numFeatures);

    // setup problem
    svm_problem problem;
    problem.l = targets.size();
    problem.y = targetsPtr;
    problem.x = observationsPtr;

    // specific to out training sets
    // TODO:    This is hard coded. 
    //          Bust out these values for use in constructor
    param_.C = 0.4;                 // cost
    param_.svm_type = 4;            // SVR
    param_.kernel_type = 2;         // radial
    param_.nu = 0.6;                // SVR nu
                                    // These values are the defaults used in the Matlab version
                                    // as found in svm_model_matlab.c
    param_.gamma = 1.0 / (double)numFeatures;
    param_.coef0 = 0;
    param_.cache_size = 100;        // in MB
    param_.shrinking = 1;
    param_.probability = 0;
    param_.degree = 3;
    param_.eps = 1e-3;
    param_.p = 0.1;
    param_.shrinking = 1;
    param_.probability = 0;
    param_.nr_weight = 0;
    param_.weight_label = NULL;
    param_.weight = NULL;

    // suppress command line output
    svm_set_print_string_function([](auto c) {});

    model_ = svm_train(&problem, &param_);
}

double SupportVectorRegressionModel::Predict(const vector<double>& observation) const
{
    LibSvmTargetObservationConvertor conv;
    svm_node *obsNode = conv.ConvertMatToSvmNode(observation);
    double prediction = svm_predict(model_, obsNode);
    return prediction;
}

SupportVectorRegressionModel::SupportVectorRegressionModel(const FilePath & modelFile)
{
    model_ = svm_load_model(modelFile.Path().c_str());
}
private:
    svm_model *model_;
    svm_parameter param_;
};
于 2016-09-26T15:43:53.430 に答える
1

オプション 1 は、実際にはかなり合理的です。モデルを matlab を介して libsvm の C 形式で保存すると、libsvm が提供する関数を使用して C/C++ でモデルを操作するのは簡単です。C++ で matlab 形式のデータを操作しようとすると、おそらくはるかに困難になります。

"svm-predict.c" (libsvm パッケージのルート ディレクトリにある)のmain関数には、おそらく必要なもののほとんどが含まれています。

if((model=svm_load_model(argv[i+1]))==0)
{
    fprintf(stderr,"can't open model file %s\n",argv[i+1]);
    exit(1);
}

たとえばxモデルを使用してラベルを予測するには、実行できます

int predict_label = svm_predict(model,x);

これで最も難しい部分は、データを libsvm 形式に転送することです (ただし、データが libsvm テキスト ファイル形式でない限り、その場合predictは "svm-predict.c" の関数を使用するだけです)。

libsvm ベクトル はxstruct svm_nodeデータのまばらな配列を表す の配列です。各 svm_node にはインデックスと値があり、ベクトルは -1 に設定されたインデックスで終了する必要があります。たとえば、 vector をエンコードするに[0,1,0,5]は、次のようにします。

struct svm_node *x = (struct svm_node *) malloc(3*sizeof(struct svm_node));
x[0].index=2; //NOTE: libsvm indices start at 1
x[0].value=1.0;
x[1].index=4;
x[1].value=5.0;
x[2].index=-1;

分類子 (C_SVC) 以外の SVM タイプについてはpredict、「svm-predict.c」の関数を参照してください。

于 2013-03-01T00:04:34.237 に答える