CSC 形式はすべての非ゼロ エントリの行インデックスのリストを保持し、CSR 形式はすべての非ゼロ エントリの列インデックスのリストを保持します。それを利用して、次のように入れ替えることができると思います。副作用はないと思います。
def swap_rows(mat, a, b) :
mat_csc = scipy.sparse.csc_matrix(mat)
a_idx = np.where(mat_csc.indices == a)
b_idx = np.where(mat_csc.indices == b)
mat_csc.indices[a_idx] = b
mat_csc.indices[b_idx] = a
return mat_csc.asformat(mat.format)
def swap_cols(mat, a, b) :
mat_csr = scipy.sparse.csr_matrix(mat)
a_idx = np.where(mat_csr.indices == a)
b_idx = np.where(mat_csr.indices == b)
mat_csr.indices[a_idx] = b
mat_csr.indices[b_idx] = a
return mat_csr.asformat(mat.format)
次のようなことができるようになりました。
>>> mat = np.zeros((5,5))
>>> mat[[1, 2, 3, 3], [0, 2, 2, 4]] = 1
>>> mat = scipy.sparse.lil_matrix(mat)
>>> mat.todense()
matrix([[ 0., 0., 0., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 1., 0., 1.],
[ 0., 0., 0., 0., 0.]])
>>> swap_rows(mat, 1, 3)
<5x5 sparse matrix of type '<type 'numpy.float64'>'
with 4 stored elements in LInked List format>
>>> swap_rows(mat, 1, 3).todense()
matrix([[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 1.],
[ 0., 0., 1., 0., 0.],
[ 1., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
>>> swap_cols(mat, 0, 4)
<5x5 sparse matrix of type '<type 'numpy.float64'>'
with 4 stored elements in LInked List format>
>>> swap_cols(mat, 0, 4).todense()
matrix([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 1.],
[ 0., 0., 1., 0., 0.],
[ 1., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])
LIL マトリックスを使用して、出力の型を保持する方法を示しました。アプリケーションでは、変換を最小限に抑えるために、おそらく既に CSC または CSR 形式になり、それに基づいて行または列を最初に交換するかどうかを選択する必要があります。