4

python から LDA 変換されたコーパスを読み込むにはどうすればよいgensimですか? 私が試したこと:

from gensim import corpora, models
import numpy.random
numpy.random.seed(10)

doc0 = [(0, 1), (1, 1)]
doc1 = [(0,1)]
doc2 = [(0, 1), (1, 1)]
doc3 = [(0, 3), (1, 1)]

corpus = [doc0,doc1,doc2,doc3]
dictionary = corpora.Dictionary(corpus)

tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
corpus_tfidf.save('x.corpus_tfidf')

# To access the tfidf fitted corpus i've saved i used corpora.MmCorpus.load()
corpus_tfidf = corpora.MmCorpus.load('x.corpus_tfidf')

lda = models.ldamodel.LdaModel(corpus_tfidf, id2word=dictionary, num_topics=2)
corpus_lda = lda[corpus]
corpus_lda.save('x.corpus_lda')

for i,j in enumerate(corpus_lda):
  print j, corpus[i]

上記のコードは次を出力します。

[(0, 0.54259038344543631), (1, 0.45740961655456358)] [(0, 1), (1, 1)]
[(0, 0.56718063124157458), (1, 0.43281936875842542)] [(0, 1)]
[(0, 0.54255407573666647), (1, 0.45744592426333358)] [(0, 1), (1, 1)]
[(0, 0.75229707773868093), (1, 0.2477029222613191)] [(0, 3), (1, 1)]

# [(<topic_number_from x.corpus_lda model>, 
#   <probability of this topic for this document>), 
#  (<topic# from lda model>, <prob of this top for this doc>)] [<document[i] from corpus>]

保存した LDA 変換済みコーパスをロードしたい場合、どのクラスからgensimロードすればよいですか?

を使用してみcorpora.MmCorpus.load()ましたが、上記と同じ変換されたコーパスの出力が得られません。

>>> lda_corpus = corpora.MmCorpus.load('x.corpus_lda')
>>> for i,j in enumerate(lda_corpus):
...   print j, corpus[i]
... 
[(0, 0.55087839240547309), (1, 0.44912160759452685)] [(0, 1), (1, 1)]
[(0, 0.56715974584850259), (1, 0.43284025415149735)] [(0, 1)]
[(0, 0.54275680271070581), (1, 0.45724319728929413)] [(0, 1), (1, 1)]
[(0, 0.75233330695720912), (1, 0.24766669304279079)] [(0, 3), (1, 1)]
4

2 に答える 2

1

corpora.XCorpushttp://radimrehurek.com/gensim/apiref.html )で可能なすべてのクラスを試した後、BleiCorpusを使用してロードしようとしましたが、保存されたモデルと同じ出力が小数点以下の桁数で生成されたようです。

>>> from gensim import corpora, models
>>> import numpy.random
>>> numpy.random.seed(10)
>>> 
>>> doc0 = [(0, 1), (1, 1)]
>>> doc1 = [(0,1)]
>>> doc2 = [(0, 1), (1, 1)]
>>> doc3 = [(0, 3), (1, 1)]
>>> corpus = [doc0,doc1,doc2,doc3]
>>> dictionary = corpora.Dictionary(corpus)
>>> 
>>> tfidf = models.TfidfModel(corpus)
>>> corpus_tfidf = tfidf[corpus]
>>> 
>>> lda = models.ldamodel.LdaModel(corpus_tfidf, id2word=dictionary, num_topics=3)
>>> corpus_lda = lda[corpus]
>>> corpus_lda.save('x.corpus_lda')
>>> 
>>> for i,j in enumerate(corpus_lda):
...   print j, corpus[i]
... 
[(0, 0.15441373560695118), (1, 0.56498524668290762), (2, 0.28060101771014123)] [(0, 1), (1, 1)]
[(0, 0.59512220481946487), (1, 0.22817873367464175), (2, 0.17669906150589348)] [(0, 1)]
[(0, 0.52219543266162705), (1, 0.15449347037173339), (2, 0.32331109696663957)] [(0, 1), (1, 1)]
[(0, 0.83364632205849853), (1, 0.086514534997754619), (2, 0.079839142943746944)] [(0, 3), (1, 1)]
>>>
>>> lda_corpus = corpora.BleiCorpus.load('x.corpus_lda')
>>> for i,j in enumerate(lda_corpus):
...   print j, corpus[i]
... 
[(0, 0.154413735607), (1, 0.564985246683), (2, 0.280601017710)] [(0, 1), (1, 1)]
[(0, 0.595122204819), (1, 0.228178733675), (2, 0.176699061506)] [(0, 1)]
[(0, 0.522195432662), (1, 0.154493470372), (2, 0.323311096967)] [(0, 1), (1, 1)]
[(0, 0.833646322058), (1, 0.086514534998), (2, 0.079839142944)] [(0, 3), (1, 1)]
于 2013-03-03T10:51:33.803 に答える