これは、少なくともある程度の約束がある大まかな解決策です。多くの/ほとんどの最適化ルーチンがユーザー指定の勾配関数を許可していることを指摘してくれた Ben Bolker に大いに感謝します。
より多くのパラメーター値を使用したテスト問題は、より大きな改善を示す可能性がありますが、8 コア マシンでは、並列化された勾配関数を使用した実行に、シリアル バージョンの約 70% の時間がかかります。ここで使用されている大まかな勾配近似は収束を遅らせているように見えるため、プロセスに時間がかかることに注意してください。
## Set up the cluster
require("parallel");
.nlocalcores = NULL; # Default to "Cores available - 1" if NULL.
if(is.null(.nlocalcores)) { .nlocalcores = detectCores() - 1; }
if(.nlocalcores < 1) { print("Multiple cores unavailable! See code!!"); return()}
print(paste("Using ",.nlocalcores,"cores for parallelized gradient computation."))
.cl=makeCluster(.nlocalcores);
print(.cl)
# Now define a gradient function: both in serial and in parallel
mygr <- function(.params, ...) {
dp = cbind(rep(0,length(.params)),diag(.params * 1e-8)); # TINY finite difference
Fout = apply(dp,2, function(x) fn(.params + x,...)); # Serial
return((Fout[-1]-Fout[1])/diag(dp[,-1])); # finite difference
}
mypgr <- function(.params, ...) { # Now use the cluster
dp = cbind(rep(0,length(.params)),diag(.params * 1e-8));
Fout = parCapply(.cl, dp, function(x) fn(.params + x,...)); # Parallel
return((Fout[-1]-Fout[1])/diag(dp[,-1])); #
}
## Lets try it out!
fr <- function(x, slow=FALSE) { ## Rosenbrock Banana function from optim() documentation.
if(slow) { Sys.sleep(0.1); } ## Modified to be a little slow, if needed.
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
grr <- function(x, slow=FALSE) { ## Gradient of 'fr'
if(slow) { Sys.sleep(0.1); } ## Modified to be a little slow, if needed.
x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),
200 * (x2 - x1 * x1))
}
## Make sure the nodes can see these functions & other objects as called by the optimizer
fn <- fr; # A bit of a hack
clusterExport(cl, "fn");
# First, test our gradient approximation function mypgr
print( mypgr(c(-1.2,1)) - grr(c(-1.2,1)))
## Some test calls, following the examples in the optim() documentation
tic = Sys.time();
fit1 = optim(c(-1.2,1), fr, slow=FALSE); toc1=Sys.time()-tic
fit2 = optim(c(-1.2,1), fr, gr=grr, slow=FALSE, method="BFGS"); toc2=Sys.time()-tic-toc1
fit3 = optim(c(-1.2,1), fr, gr=mygr, slow=FALSE, method="BFGS"); toc3=Sys.time()-tic-toc1-toc2
fit4 = optim(c(-1.2,1), fr, gr=mypgr, slow=FALSE, method="BFGS"); toc4=Sys.time()-tic-toc1-toc2-toc3
## Now slow it down a bit
tic = Sys.time();
fit5 = optim(c(-1.2,1), fr, slow=TRUE); toc5=Sys.time()-tic
fit6 = optim(c(-1.2,1), fr, gr=grr, slow=TRUE, method="BFGS"); toc6=Sys.time()-tic-toc5
fit7 = optim(c(-1.2,1), fr, gr=mygr, slow=TRUE, method="BFGS"); toc7=Sys.time()-tic-toc5-toc6
fit8 = optim(c(-1.2,1), fr, gr=mypgr, slow=TRUE, method="BFGS"); toc8=Sys.time()-tic-toc5-toc6-toc7
print(cbind(fast=c(default=toc1,exact.gr=toc2,serial.gr=toc3,parallel.gr=toc4),
slow=c(toc5,toc6,toc7,toc8)))