次のように、少しdata.frameがあります(現在はxtsでタイムスタンプされています。問題にならないことを願っています)。
> head(testData)
Year Day Hour Min Sec. E1.S1 E1.S2 E1.S3 E1.S4 E1.S5 E1.S6
2000-05-01 10:25:59 2000 122 10 25.0 35.144 3.572000 2.912000 2.512 6.352 10.604000 8.078
2000-05-01 10:26:48 2000 122 10 26.0 31.570 2.203333 2.423333 6.160 13.000 9.463333 3.970
2000-05-01 10:27:48 2000 122 10 26.8 35.964 2.118000 3.044000 4.232 11.770 12.696000 6.088
E1.S7 E1.S8 E2.S1 E2.S2 E2.S3 E2.S4 E2.S5 E2.S6 E2.S7
2000-05-01 10:25:59 3.0444 3.574000 0.9244 1.5868 1.3224 1.852800 2.646000 2.910 2.382000
2000-05-01 10:26:48 3.3100 3.083333 1.1000 1.5440 1.9800 2.646667 2.646667 3.310 1.763333
2000-05-01 10:27:48 2.6440 2.646000 1.8528 1.8524 2.9120 2.648000 3.970000 5.292 1.850000
E2.S8 E3.S1 E3.S2 E3.S3 E3.S4 E3.S5 E3.S6 E3.S7
2000-05-01 10:25:59 1.586000 0.7920000 1.0568000 1.7184 1.720400 2.116400 0.9248 2.1180
2000-05-01 10:26:48 1.983333 0.4413333 0.2206667 1.5400 1.100667 2.646667 0.8800 0.8800
2000-05-01 10:27:48 1.452000 0.9264000 1.1908000 2.5140 1.718400 2.250400 2.2504 1.8504
E3.S8 E4.S1 E4.S2 E4.S3 E4.S4 E4.S5 E4.S6 E4.S7
2000-05-01 10:25:59 1.1880 0.9252000 0.1324000 0.6612 0.6604 0.5288000 0.132400 0.6612000
2000-05-01 10:26:48 2.2040 0.2206667 0.2206667 0.4400 0.4400 0.8813333 1.100667 0.8813333
2000-05-01 10:27:48 0.9240 0.7936000 0.7928000 0.9244 1.3208 0.6612000 0.132400 0.5288000
E4.S8 FP5.S1 FP5.S2 FP5.S3 FP5.S4 FP5.S5 FP5.S6 FP5.S7
2000-05-01 10:25:59 1.0560 0.0662000 0.3310 0.3968000 0.0662000 0.0000000 0.2648000 0.19860
2000-05-01 10:26:48 1.1000 0.1103333 0.3310 0.2206667 0.1103333 0.4413333 0.2206667 0.33100
2000-05-01 10:27:48 0.5288 0.2648000 0.4632 0.0000000 0.4632000 0.2648000 0.2648000 0.72660
FP5.S8 FP6.S1 FP6.S2 FP6.S3 FP6.S4 FP6.S5 FP6.S6 FP6.S7 FP6.S8
2000-05-01 10:25:59 0.2648000 0.1324 0.1986000 0.2648 0.00000 0.1324000 0.1324 0.1324 0.0662000
2000-05-01 10:26:48 0.2206667 0.0000 0.1103333 0.0000 0.00000 0.2206667 0.0000 0.0000 0.1103333
2000-05-01 10:27:48 0.1324000 0.0000 0.0000000 0.0000 0.00000 0.1986000 0.1324 0.1324 0.0662000
FP7.S1 FP7.S2 FP7.S3 FP7.S4 FP7.S5 FP7.S6 FP7.S7 FP7.S8 PA.LEFS60S1
2000-05-01 10:25:59 0.1324 0.0000 0.00000 0.0000 0.1324000 0.3310000 0.0000 0.39680 79.46
2000-05-01 10:26:48 0.0000 0.0000 0.00000 0.0000 0.4413333 0.1103333 0.0000 0.00000 78.50
2000-05-01 10:27:48 0.0000 0.3972 0.00000 0.1324 0.1324000 0.1986000 0.1324 0.00000 84.10
PA.LEFS60S2 PA.LEFS60S3 PA.LEFS60S4 PA.LEFS60S5 PA.LEFS60S6 PA.LEFS60S7
2000-05-01 10:25:59 83.26000 103.48 131.6000 157.6000 148.6000 120.60000
2000-05-01 10:26:48 99.93333 130.00 160.6667 153.6667 121.6667 92.96667
2000-05-01 10:27:48 95.68000 118.60 144.6000 155.0000 134.6000 109.10000
PA.LEFS60S8 BX BY BZ Bmag....nT.
2000-05-01 10:25:59 94.44000 3.608000 2.6620000 5.032000 6.8840
2000-05-01 10:26:48 75.63333 4.943333 -0.5133333 4.816667 6.9300
2000-05-01 10:27:48 89.44000 3.908000 0.9634000 5.490000 6.8460
> dput(head(testData))
structure(c(2000, 2000, 2000, 2000, 2000, 2000, 122, 122, 122,
122, 122, 122, 10, 10, 10, 10, 10, 10, 25, 26, 26.8, 28, 29,
30, 35.144, 31.57, 35.964, 21.4, 24.892, 25.354, 3.572, 2.20333333333333,
2.118, 3.8025, 4.628, 5.292, 2.912, 2.42333333333333, 3.044,
1.488, 3.97, 5.428, 2.512, 6.16, 4.232, 4.465, 3.836, 7.54, 6.352,
13, 11.77, 7.775, 8.604, 14.16, 10.604, 9.46333333333333, 12.696,
10.93, 16.68, 23.96, 8.078, 3.97, 6.088, 10.425, 15.612, 29.1,
3.0444, 3.31, 2.644, 5.135, 10.32, 20.612, 3.574, 3.08333333333333,
2.646, 3.1425, 3.966, 9.918, 0.9244, 1.1, 1.8528, 2.645, 4.368,
8.476, 1.5868, 1.544, 1.8524, 2.315, 3.572, 6.218, 1.3224, 1.98,
2.912, 3.4725, 6.34, 12.832, 1.8528, 2.64666666666667, 2.648,
6.4475, 8.86, 24.74, 2.646, 2.64666666666667, 3.97, 7.275, 12.948,
30.7, 2.91, 3.31, 5.292, 7.44, 12.988, 30.42, 2.382, 1.76333333333333,
1.85, 3.315, 12.174, 32.28, 1.586, 1.98333333333333, 1.452, 2.81,
7.286, 17.72, 0.792, 0.441333333333333, 0.9264, 1.655, 4.234,
10.194, 1.0568, 0.220666666666667, 1.1908, 1.1555, 3.8388, 7.016,
1.7184, 1.54, 2.514, 3.3105, 8.192, 14.004, 1.7204, 1.10066666666667,
1.7184, 4.1375, 11.504, 37.44, 2.1164, 2.64666666666667, 2.2504,
4.135, 17.876, 51.74, 0.9248, 0.88, 2.2504, 4.4675, 18.28, 52.38,
2.118, 0.88, 1.8504, 5.465, 14.696, 52.12, 1.188, 2.204, 0.924,
3.1425, 10.73, 30.82, 0.9252, 0.220666666666667, 0.7936, 0.331,
5.03, 14.152, 0.1324, 0.220666666666667, 0.7928, 1.983, 3.97,
10.714, 0.6612, 0.44, 0.9244, 1.653, 10.196, 20.1, 0.6604, 0.44,
1.3208, 3.9675, 20.76, 54.78, 0.5288, 0.881333333333333, 0.6612,
4.47, 20.52, 68, 0.1324, 1.10066666666667, 0.1324, 5.7925, 21.44,
78.42, 0.6612, 0.881333333333333, 0.5288, 3.4775, 24.604, 76.12,
1.056, 1.1, 0.5288, 2.313, 15.082, 42.86, 0.0662, 0.110333333333333,
0.2648, 0.579, 1.6552, 3.838, 0.331, 0.331, 0.4632, 1.1565, 2.446,
2.054, 0.3968, 0.220666666666667, 0, 0.41375, 1.7862, 3.97, 0.0662,
0.110333333333333, 0.4632, 0.9935, 2.976, 9.792, 0, 0.441333333333333,
0.2648, 0.6605, 2.78, 9.672, 0.2648, 0.220666666666667, 0.2648,
0.74425, 2.9782, 10.592, 0.1986, 0.331, 0.7266, 1.32375, 4.036,
9.136, 0.2648, 0.220666666666667, 0.1324, 0.908, 2.7144, 5.292,
0.1324, 0, 0, 0, 0, 0.1986, 0.1986, 0.110333333333333, 0, 0.1655,
0, 0, 0.2648, 0, 0, 0.1655, 0, 0, 0, 0, 0, 0.08275, 0.331, 0.1324,
0.1324, 0.220666666666667, 0.1986, 0.24825, 0.2648, 0.0662, 0.1324,
0, 0.1324, 0.331, 0.3972, 0.662, 0.1324, 0, 0.1324, 0, 0.1324,
0.1324, 0.0662, 0.110333333333333, 0.0662, 0.1655, 0.0662, 0.1324,
0.1324, 0, 0, 0, 0, 0.1324, 0, 0, 0.3972, 0.1655, 0.3968, 0,
0, 0, 0, 0.08275, 0.0662, 0.0662, 0, 0, 0.1324, 0.1655, 0, 0.2648,
0.1324, 0.441333333333333, 0.1324, 0, 0.1324, 0.0662, 0.331,
0.110333333333333, 0.1986, 0.331, 0.1986, 0.1986, 0, 0, 0.1324,
0, 0.2648, 0.1986, 0.3968, 0, 0, 0.08275, 0.1986, 0, 79.46, 78.5,
84.1, 89.2, 90.06, 93.8, 83.26, 99.9333333333333, 95.68, 92.4,
90.08, 87.88, 103.48, 130, 118.6, 108.75, 104.42, 97.36, 131.6,
160.666666666667, 144.6, 131.75, 127, 118, 157.6, 153.666666666667,
155, 149.75, 147.6, 141.2, 148.6, 121.666666666667, 134.6, 144,
147.6, 151.8, 120.6, 92.9666666666667, 109.1, 122, 127, 136,
94.44, 75.6333333333333, 89.44, 100.775, 104.4, 112.2, 3.608,
4.94333333333333, 3.908, 2.885, 2.548, 1.708, 2.662, -0.513333333333333,
0.9634, 2.0675, 2.544, 3.208, 5.032, 4.81666666666667, 5.49,
5.7875, 5.776, 5.768, 6.884, 6.93, 6.846, 6.8025, 6.838, 6.824
), .indexCLASS = c("POSIXlt", "POSIXt"), .indexTZ = "", tclass = c("POSIXlt",
"POSIXt"), tzone = "", class = c("xts", "zoo"), index = structure(c(957173159,
957173208, 957173268, 957173329, 957173389, 957173450), tzone = "", tclass = c("POSIXlt",
"POSIXt")), .Dim = c(6L, 73L), .Dimnames = list(NULL, c("Year",
"Day", "Hour", "Min", "Sec.", "E1.S1", "E1.S2", "E1.S3", "E1.S4",
"E1.S5", "E1.S6", "E1.S7", "E1.S8", "E2.S1", "E2.S2", "E2.S3",
"E2.S4", "E2.S5", "E2.S6", "E2.S7", "E2.S8", "E3.S1", "E3.S2",
"E3.S3", "E3.S4", "E3.S5", "E3.S6", "E3.S7", "E3.S8", "E4.S1",
"E4.S2", "E4.S3", "E4.S4", "E4.S5", "E4.S6", "E4.S7", "E4.S8",
"FP5.S1", "FP5.S2", "FP5.S3", "FP5.S4", "FP5.S5", "FP5.S6", "FP5.S7",
"FP5.S8", "FP6.S1", "FP6.S2", "FP6.S3", "FP6.S4", "FP6.S5", "FP6.S6",
"FP6.S7", "FP6.S8", "FP7.S1", "FP7.S2", "FP7.S3", "FP7.S4", "FP7.S5",
"FP7.S6", "FP7.S7", "FP7.S8", "PA.LEFS60S1", "PA.LEFS60S2", "PA.LEFS60S3",
"PA.LEFS60S4", "PA.LEFS60S5", "PA.LEFS60S6", "PA.LEFS60S7", "PA.LEFS60S8",
"BX", "BY", "BZ", "Bmag....nT.")))
タイムスタンプごとに、E1.S* 値と PA.LEFS60S* 値の cos をプロット (および統計情報を取得) する必要があります。たとえば、タイムスタンプ 2000-05-01 10:25:59 の場合:
# These are the values from PA.LEFS60S1 to PA.LEFS60S8
x = c(79.46, 83.26000, 103.48, 131.6000, 157.6000, 148.6000, 120.60000, 94.44000)
# These are the values from E1.S1 to E1.S8
y = c(3.572000, 2.912000, 2.512, 6.352, 10.604000, 8.078,3.0444, 3.574000)
plot(cos(x),y)
次に、平均(y) とタイムスタンプのようなものを長期間にわたってプロットする必要があります...これは、プロセスを自動化する方法を取得した後にのみ実行できます。
これまでのところ、これは手動でしかできません。forサイクルでそれを行う方法を考えて、テーブルから各名前を確認することはできますが。しかし、それは計算が遅すぎて複雑すぎて、R のようには見えません。
私はメルト関数で手を試しmelt(testData)
ました--rshape2パッケージからですが、出力はインデックスとしてtimeStampを持ち、列情報を持たない行数だけです。