(このプログラムの依存関係:vector --any
およびJuicyPixels >= 2
。コードはGistとして入手できます。)
{-# LANGUAGE Haskell2010 #-}
{-# LANGUAGE BangPatterns #-}
import Control.Arrow
import Data.Bits
import Data.Vector.Unboxed ((!))
import Data.Word
import System.Environment (getArgs)
import qualified Codec.Picture as P
import qualified Data.ByteString as B
import qualified Data.Vector.Unboxed as V
Ken Perlin の改善されたノイズを Haskellに移植しようとしまし たが、私の方法が正しいかどうかは完全にはわかりません。主要部分は、高次元と低次元にうまく一般化する必要があるものですが、それは後で説明します。
perlin3 :: (Ord a, Num a, RealFrac a, V.Unbox a) => Permutation -> (a, a, a) -> a
perlin3 p (!x', !y', !z')
= let (!xX, !x) = actuallyProperFraction x'
(!yY, !y) = actuallyProperFraction y'
(!zZ, !z) = actuallyProperFraction z'
!u = fade x
!v = fade y
!w = fade z
!h = xX
!a = next p h + yY
!b = next p (h+1) + yY
!aa = next p a + zZ
!ab = next p (a+1) + zZ
!ba = next p b + zZ
!bb = next p (b+1) + zZ
!aaa = next p aa
!aab = next p (aa+1)
!aba = next p ab
!abb = next p (ab+1)
!baa = next p ba
!bab = next p (ba+1)
!bba = next p bb
!bbb = next p (bb+1)
in
lerp w
(lerp v
(lerp u
(grad aaa (x, y, z))
(grad baa (x-1, y, z)))
(lerp u
(grad aba (x, y-1, z))
(grad bba (x-1, y-1, z))))
(lerp v
(lerp u
(grad aab (x, y, z-1))
(grad bab (x-1, y, z-1)))
(lerp u
(grad abb (x, y-1, z-1))
(grad bbb (x-1, y-1, z-1))))
もちろん、これには関数で言及されているいくつかの関数が伴いperlin3
ますが、それらが可能な限り効率的であることを願っています。
fade :: (Ord a, Num a) => a -> a
fade !t | 0 <= t, t <= 1 = t * t * t * (t * (t * 6 - 15) + 10)
lerp :: (Ord a, Num a) => a -> a -> a -> a
lerp !t !a !b | 0 <= t, t <= 1 = a + t * (b - a)
grad :: (Bits hash, Integral hash, Num a, V.Unbox a) => hash -> (a, a, a) -> a
grad !hash (!x, !y, !z) = dot3 (vks `V.unsafeIndex` fromIntegral (hash .&. 15)) (x, y, z)
where
vks = V.fromList
[ (1,1,0), (-1,1,0), (1,-1,0), (-1,-1,0)
, (1,0,1), (-1,0,1), (1,0,-1), (-1,0,-1)
, (0,1,1), (0,-1,1), (0,1,-1), (0,-1,-1)
, (1,1,0), (-1,1,0), (0,-1,1), (0,-1,-1)
]
dot3 :: Num a => (a, a, a) -> (a, a, a) -> a
dot3 (!x0, !y0, !z0) (!x1, !y1, !z1) = x0 * x1 + y0 * y1 + z0 * z1
-- Unlike `properFraction`, `actuallyProperFraction` rounds as intended.
actuallyProperFraction :: (RealFrac a, Integral b) => a -> (b, a)
actuallyProperFraction x
= let (ipart, fpart) = properFraction x
r = if x >= 0 then (ipart, fpart)
else (ipart-1, 1+fpart)
in r
順列グループについては、Perlin が彼の Web サイトで使用したものをコピーしました。
newtype Permutation = Permutation (V.Vector Word8)
mkPermutation :: [Word8] -> Permutation
mkPermutation xs
| length xs >= 256
= Permutation . V.fromList $ xs
permutation :: Permutation
permutation = mkPermutation
[151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
]
next :: Permutation -> Word8 -> Word8
next (Permutation !v) !idx'
= v `V.unsafeIndex` (fromIntegral $ idx' .&. 0xFF)
そして、これらすべてが JuicyPixels と結びついています:
main = do
[target] <- getArgs
let image = P.generateImage pixelRenderer 512 512
P.writePng target image
where
pixelRenderer, pixelRenderer' :: Int -> Int -> Word8
pixelRenderer !x !y
= floor $ ((perlin3 permutation ((fromIntegral x - 256) / 32,
(fromIntegral y - 256) / 32, 0 :: Double))+1)/2 * 128
-- This code is much more readable, but also much slower.
pixelRenderer' x y
= (\w -> floor $ ((w+1)/2 * 128)) -- w should be in [-1,+1]
. perlin3 permutation
. (\(x,y,z) -> ((x-256)/32, (y-256)/32, (z-256)/32))
$ (fromIntegral x, fromIntegral y, 0 :: Double)
私の問題は、それが私perlin3
には非常に遅いように見えることです。私pixelRenderer
がそれをプロファイリングすると、同様に多くの時間がかかっていますが、今は無視します。最適化の仕方がわかりませんperlin3
。強打パターンで GHC をほのめかそうとしましたが、これにより実行時間が半分になりました。明示的な特殊化とインライン化は、ほとんど役に立ちませんghc -O
。これはperlin3
遅いはずですか?
更新: この質問の以前のバージョンでは、コードのバグについて言及されていました。この問題は解決されました。私の古いバージョンのactuallyProperFraction
はバグが多かったことがわかりました。浮動小数点数の整数部分を に暗黙的に丸め、それを浮動小数点数からWord8
減算して小数部分を取得していました。とWord8
の間の値しかとれないため、負の数を含むその範囲外の数値に対しては正しく機能しません。0
255