これが1つのアプローチです...それはあなたのデータに対して機能しますか?OPのデータを含む詳細については、さらに下を参照してください
# load text mining library
library(tm)
# make first corpus for text mining (data comes from package, for reproducibility)
data("crude")
corpus1 <- Corpus(VectorSource(crude[1:10]))
# process text (your methods may differ)
skipWords <- function(x) removeWords(x, stopwords("english"))
funcs <- list(tolower, removePunctuation, removeNumbers,
stripWhitespace, skipWords, MinDocFrequency=5)
crude1 <- tm_map(corpus1, FUN = tm_reduce, tmFuns = funcs)
crude1.dtm <- TermDocumentMatrix(crude1, control = list(wordLengths = c(3,10)))
# prepare 2nd corpus
corpus2 <- Corpus(VectorSource(crude[11:20]))
# process text as above
skipWords <- function(x) removeWords(x, stopwords("english"))
funcs <- list(tolower, removePunctuation, removeNumbers, stripWhitespace, skipWords)
crude2 <- tm_map(corpus2, FUN = tm_reduce, tmFuns = funcs)
crude2.dtm <- TermDocumentMatrix(crude1, control = list(wordLengths = c(3,10)))
crude2.dtm.mat <- as.matrix(crude2.dtm)
# subset second corpus by words in first corpus
crude2.dtm.mat[rownames(crude2.dtm.mat) %in% crude1.dtm.freq, ]
Docs
Terms reut-00001.xml reut-00002.xml reut-00004.xml reut-00005.xml reut-00006.xml
oil 5 12 2 1 1
opec 0 15 0 0 0
prices 3 5 0 0 0
Docs
Terms reut-00007.xml reut-00008.xml reut-00009.xml reut-00010.xml reut-00011.xml
oil 7 4 3 5 9
opec 8 1 2 2 6
prices 5 1 2 1 9
データとコメントの後に更新これはあなたの質問に少し近いと思います。
これは、TDMの代わりにドキュメント用語マトリックスを使用した同じプロセスです(上記で使用したように、わずかなバリエーションです)。
# load text mining library
library(tm)
# make corpus for text mining (data comes from package, for reproducibility)
data("crude")
corpus1 <- Corpus(VectorSource(crude[1:10]))
# process text (your methods may differ)
skipWords <- function(x) removeWords(x, stopwords("english"))
funcs <- list(tolower, removePunctuation, removeNumbers, stripWhitespace, skipWords)
crude1 <- tm_map(corpus1, FUN = tm_reduce, tmFuns = funcs)
crude1.dtm <- DocumentTermMatrix(crude1, control = list(wordLengths = c(3,10)))
corpus2 <- Corpus(VectorSource(crude[11:20]))
# process text (your methods may differ)
skipWords <- function(x) removeWords(x, stopwords("english"))
funcs <- list(tolower, removePunctuation, removeNumbers,
stripWhitespace, skipWords, MinDocFrequency=5)
crude2 <- tm_map(corpus2, FUN = tm_reduce, tmFuns = funcs)
crude2.dtm <- DocumentTermMatrix(crude1, control = list(wordLengths = c(3,10)))
crude2.dtm.mat <- as.matrix(crude2.dtm)
crude2.dtm.mat[,colnames(crude2.dtm.mat) %in% crude1.dtm.freq ]
Terms
Docs oil opec prices
reut-00001.xml 5 0 3
reut-00002.xml 12 15 5
reut-00004.xml 2 0 0
reut-00005.xml 1 0 0
reut-00006.xml 1 0 0
reut-00007.xml 7 8 5
reut-00008.xml 4 1 1
reut-00009.xml 3 2 2
reut-00010.xml 5 2 1
reut-00011.xml 9 6 9
そして、これがOPの質問に追加されたデータを使用した解決策です
text <- c('saying text is good',
'saying text once and saying text twice is better',
'saying text text text is best',
'saying text once is still ok',
'not saying it at all is bad',
'because text is a good thing',
'we all like text',
'even though sometimes it is missing')
validationText <- c("This has different words in it.",
"But I still want to count",
"the occurence of text",
"for example")
TextCorpus <- Corpus(VectorSource(text))
ValiTextCorpus <- Corpus(VectorSource(validationText))
Control = list(stopwords=TRUE, removePunctuation=TRUE, removeNumbers=TRUE, MinDocFrequency=5)
TextDTM = DocumentTermMatrix(TextCorpus, Control)
ValiTextDTM = DocumentTermMatrix(ValiTextCorpus, Control)
# find high frequency terms in TextDTM
(TextDTM.hifreq <- findFreqTerms(TextDTM, 5))
[1] "saying" "text"
# find out how many times each high freq word occurs in TextDTM
TextDTM.mat <- as.matrix(TextDTM)
colSums(TextDTM.mat[,TextDTM.hifreq])
saying text
6 9
ここにキーラインがあります。最初のDTMからの高頻度単語のリストに基づいて、2番目のDTMをサブセット化します。この場合intersect
、高頻度の単語のベクトルには2番目のコーパスにまったく含まれていない単語が含まれているため、この関数を使用しました(そして、intersect
それよりもうまく処理できるようです%in%
)
# now look into second DTM
ValiTextDTM.mat <- as.matrix(ValiTextDTM)
common <- data.frame(ValiTextDTM.mat[, intersect(colnames(ValiTextDTM.mat), TextDTM.hifreq) ])
names(common) <- intersect(colnames(ValiTextDTM.mat), TextDTM.hifreq)
text
1 0
2 0
3 1
4 0
2番目のコーパスで高頻度の単語の総数を見つける方法:
colSums(common)
text
1