2

私はとを持ってcanvaslinesます。オンclickクリックが私の行にあったかどうかを確認して、それを強調表示します。

rectanglesを使うだけで簡単なところもあります。しかし、私はもちろん同じテクニックを使うことはできません。もちろん、線は長方形を塗りつぶしません。startend pointdiagonal line

しかし、他にどうすればこれを達成できますか?さらに、細い線はクリックしにくいかもしれないので、クリックが線に十分近い場合はそれもマークされるように、いくつかの「オフセット」も必要です。

おそらく、これを実行したい最初のキーワードではないので、適切なキーワードが欠落しています。お役に立てば幸いです。

4

2 に答える 2

4

次の行の方程式を書きます。

a*x + b*y + c = 0

次に、クリックした座標を次の方程式に入れます。

distance = a*x1 + b*y1 + c 

(x1, y1)クリックしたポイントはどこですか。distance < threshold行をクリックした場合。

于 2013-03-25T13:47:34.643 に答える
3

Gaborは正しいです。2点間の距離を計算してそれを使用するのは非常に簡単です。Rogerの提案したリンクに基づいて、2点間の距離を測定するAWTソースコードから抽出されたコードを次に示します。 http://developer.classpath.org/doc/java/awt/geom/Line2D-source.html

したがって、コードは次のようになります

if (ptLineDist(lineX1,lineY1,lineX2,lineY2,clickX,clickY) < someLimit) 
   clicked=true; 
else clicked=false;

これがAWTコードです(ライセンスについては上のリンクを確認してください)

 521:   /**
 522:    * Measures the square of the shortest distance from the reference point
 523:    * to a point on the infinite line extended from the segment. If the point
 524:    * is on the segment, the result will be 0. If the segment is length 0,
 525:    * the distance is to the common endpoint.
 526:    *
 527:    * @param x1 the first x coordinate of the segment
 528:    * @param y1 the first y coordinate of the segment
 529:    * @param x2 the second x coordinate of the segment
 530:    * @param y2 the second y coordinate of the segment
 531:    * @param px the x coordinate of the point
 532:    * @param py the y coordinate of the point
 533:    * @return the square of the distance from the point to the extended line
 534:    * @see #ptLineDist(double, double, double, double, double, double)
 535:    * @see #ptSegDistSq(double, double, double, double, double, double)
 536:    */
 537:   public static double ptLineDistSq(double x1, double y1, double x2, double y2,
 538:                                     double px, double py)
 539:   {
 540:     double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
 541: 
 542:     double x, y;
 543:     if (pd2 == 0)
 544:       {
 545:         // Points are coincident.
 546:         x = x1;
 547:         y = y2;
 548:       }
 549:     else
 550:       {
 551:         double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
 552:         x = x1 + u * (x2 - x1);
 553:         y = y1 + u * (y2 - y1);
 554:       }
 555: 
 556:     return (x - px) * (x - px) + (y - py) * (y - py);
 557:   }
 558: 
 559:   /**
 560:    * Measures the shortest distance from the reference point to a point on
 561:    * the infinite line extended from the segment. If the point is on the
 562:    * segment, the result will be 0. If the segment is length 0, the distance
 563:    * is to the common endpoint.
 564:    *
 565:    * @param x1 the first x coordinate of the segment
 566:    * @param y1 the first y coordinate of the segment
 567:    * @param x2 the second x coordinate of the segment
 568:    * @param y2 the second y coordinate of the segment
 569:    * @param px the x coordinate of the point
 570:    * @param py the y coordinate of the point
 571:    * @return the distance from the point to the extended line
 572:    * @see #ptLineDistSq(double, double, double, double, double, double)
 573:    * @see #ptSegDist(double, double, double, double, double, double)
 574:    */
 575:   public static double ptLineDist(double x1, double y1,
 576:                                    double x2, double y2,
 577:                                    double px, double py)
 578:   {
 579:     return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
 580:   }
 581: 
于 2013-03-25T13:55:55.937 に答える