24

scipy.optimize.curve_fitを使用して、しばらくの間、いくつかのデータに指数関数を適合させようとしましたが、実際に問題が発生しています。これが機能しない理由は本当にわかりませんが、海峡の線が生成されるだけです。理由はわかりません。

どんな助けでも大歓迎です

from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot

def func(x,a,b,c):
   return a*numpy.exp(-b*x)-c


yData = numpy.load('yData.npy')
xData = numpy.load('xData.npy')

trialX = numpy.linspace(xData[0],xData[-1],1000)

# Fit a polynomial 
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trailX))
for i in range(len(fitted)):
   y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = curve_fit(func, xData, yData)
yEXP = func(trialX, *popt)

pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX,   y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()

ここに画像の説明を入力してください

xData = [1e-06, 2e-06, 3e-06, 4e-06,
5e-06, 6e-06, 7e-06, 8e-06,
9e-06, 1e-05, 2e-05, 3e-05,
4e-05, 5e-05, 6e-05, 7e-05,
8e-05, 9e-05, 0.0001, 0.0002,
0.0003, 0.0004, 0.0005, 0.0006,
0.0007, 0.0008, 0.0009, 0.001,
0.002, 0.003, 0.004, 0.005,
0.006, 0.007, 0.008, 0.009, 0.01]

yData = 
[6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08, 3.38556130078e-08, 3.55765277358e-08,
4.13818145846e-08, 4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08, 1.45110636413e-07,
1.83066627931e-07, 2.10138415308e-07, 2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07, 5.98480176303e-07, 6.57028222701e-07,
6.98347073045e-07, 7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07, 7.87147246927e-07,
7.99607141001e-07, 8.61398763228e-07, 8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07, 9.16878548643e-07, 9.18389990067e-07]
4

3 に答える 3

41

数値アルゴリズムは、極端に小さい(または大きい)数値を与えない場合にうまく機能する傾向があります。

この場合、グラフはデータのx値とy値が非常に小さいことを示しています。それらをスケーリングすると、フィット感が大幅に向上します。

xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5

from __future__ import division

import os
os.chdir(os.path.expanduser('~/tmp'))

import numpy as np
import scipy.optimize as optimize
import matplotlib.pyplot as plt

def func(x,a,b,c):
   return a*np.exp(-b*x)-c


xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5

print(xData.min(), xData.max())
print(yData.min(), yData.max())

trialX = np.linspace(xData[0], xData[-1], 1000)

# Fit a polynomial 
fitted = np.polyfit(xData, yData, 10)[::-1]
y = np.zeros(len(trialX))
for i in range(len(fitted)):
   y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = optimize.curve_fit(func, xData, yData)
print(popt)
yEXP = func(trialX, *popt)

plt.figure()
plt.plot(xData, yData, label='Data', marker='o')
plt.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
plt.plot(trialX, y, label = '10 Deg Poly')
plt.legend()
plt.show()

ここに画像の説明を入力してください

xDataとを再スケーリングした後yData、によって返されるパラメータも再スケーリングする必要があることに注意してくださいcurve_fit。この場合a、、、bおよびcそれぞれを10 ** 5で割って、元のデータに適合したパラメーターを取得する必要があります。


上記に対する反対意見の1つは、スケーリングを「慎重に」選択する必要があるということです。(読んでください:スケールのすべての合理的な選択が機能するわけではありません!)

curve_fitパラメータの妥当な初期推定値を提供することにより、のロバスト性を向上させることができます。通常、あなたは、野球場/封筒裏のタイプが妥当なパラメータ値を推測する動機を与えることができるデータについてのいくつかの先験的な知識を持っています。

たとえばcurve_fit

guess = (-1, 0.1, 0)
popt, pcov = optimize.curve_fit(func, xData, yData, guess)

curve_fitこの場合に成功するスケールの範囲を改善するのに役立ちます。

于 2013-03-25T20:38:42.720 に答える
26

データの事前知識を考慮しない、このソリューションの(わずかな)改善は次のようになります。データセットの逆平均を取り、それを基礎となるleastsq()に渡される「スケールファクター」として使用します。 Curve_fit()によって呼び出されます。これにより、フィッターが機能し、データの元のスケールでパラメーターを返すことができます。

関連する行は次のとおりです。

popt, pcov = curve_fit(func, xData, yData)

これは次のようになります。

popt, pcov = curve_fit(func, xData, yData,
    diag=(1./xData.mean(),1./yData.mean()) )

この画像を生成する完全な例を次に示します。

データや結果を手動で再スケーリングせずにcurve_fit

from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot

def func(x,a,b,c):
   return a*numpy.exp(-b*x)-c


xData = numpy.array([1e-06, 2e-06, 3e-06, 4e-06, 5e-06, 6e-06,
7e-06, 8e-06, 9e-06, 1e-05, 2e-05, 3e-05, 4e-05, 5e-05, 6e-05,
7e-05, 8e-05, 9e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005,
0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.002, 0.003, 0.004, 0.005
, 0.006, 0.007, 0.008, 0.009, 0.01])

yData = numpy.array([6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08,
3.38556130078e-08, 3.55765277358e-08, 4.13818145846e-08,
4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08,
1.45110636413e-07, 1.83066627931e-07, 2.10138415308e-07,
2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07,
5.98480176303e-07, 6.57028222701e-07, 6.98347073045e-07,
7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07,
7.87147246927e-07, 7.99607141001e-07, 8.61398763228e-07,
8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07,
9.16878548643e-07, 9.18389990067e-07])

trialX = numpy.linspace(xData[0],xData[-1],1000)

# Fit a polynomial
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trialX))
for i in range(len(fitted)):
   y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = curve_fit(func, xData, yData,
    diag=(1./xData.mean(),1./yData.mean()) )
yEXP = func(trialX, *popt)

pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX,   y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()
于 2013-06-21T14:54:23.503 に答える
-5

モデルa*exp(-b*x)+cはデータによく適合しますが、少し変更することをお勧めします。
代わりにこれを使用して ください

a*x*exp(-b*x)+c

幸運を

于 2016-10-24T21:44:51.677 に答える