ここで、スケルトン化された画像の接合点を見つけるためのコードを見つけまし た。
コードはすべてのジャンクションを検出するのではなく、主要なジャンクション ポイントのみを検出します。
スケルトン イメージ内のすべての接合点を見つけるために、このコードをどのように適応させることができますか?
私のサンプル画像: https://docs.google.com/file/d/0ByS6Z5WRz-h2U3NBWWZ6V3FqeUk/edit?usp=sharingスケルトンに少なくとも 6 つのジャンクションがあるはずです!
私のコード:
ジャンクションを見つける前に、画像を準備します。バイナリに変換し、穴を埋めてスケルトン化します。
import numpy as np
from numpy import array
import cv2
import pymorph as m
import mahotas
import scipy.ndimage.morphology as mo
def skeletonize(img):
h1 = np.array([[0, 0, 0],[0, 1, 0],[1, 1, 1]])
m1 = np.array([[1, 1, 1],[0, 0, 0],[0, 0, 0]])
h2 = np.array([[0, 0, 0],[1, 1, 0],[0, 1, 0]])
m2 = np.array([[0, 1, 1],[0, 0, 1],[0, 0, 0]])
hit_list = []
miss_list = []
for k in range(4):
hit_list.append(np.rot90(h1, k))
hit_list.append(np.rot90(h2, k))
miss_list.append(np.rot90(m1, k))
miss_list.append(np.rot90(m2, k))
img = img.copy()
while True:
last = img
for hit, miss in zip(hit_list, miss_list):
hm = mo.binary_hit_or_miss(img, hit, miss)
img = np.logical_and(img, np.logical_not(hm))
if np.all(img == last):
break
return img
#input image
nomeimg = 'DUPLInuova/fionda 3/c (3).jpg'
img = cv2.imread(nomeimg)
gray = cv2.imread(nomeimg,0)
element = cv2.getStructuringElement(cv2.MORPH_CROSS,(6,6)) #con 4,4 si vede tutta la stella e riconosce piccoli oggetti
graydilate = cv2.erode(gray, element) #imgbnbin
ret,thresh = cv2.threshold(graydilate,127,255,cv2.THRESH_BINARY_INV)
imgbnbin = thresh
cv2.imshow('binaria',imgbnbin)
cv2.waitKey()
#finding a unique contour
contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))
Areacontours = list()
calcarea = 0.0
unicocnt = 0.0
for i in range (0, len(contours)):
area = cv2.contourArea(contours[i])
if (area > 90 ): #con 90 trova i segni e togli puntini
if (calcarea<area):
calcarea = area
unicocnt = contours[i]
cnt = unicocnt
print(len(cnt))
cv2.drawContours(thresh,contours,-1,(0,255,0),3)
#fill holes
des = imgbnbin
cv2.drawContours(des,[unicocnt],0,255,-1)
gray = cv2.bitwise_not(des)
cv2.imshow('gray tappabuchi grAY',gray)
cv2.waitKey()
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
res = cv2.morphologyEx(gray,cv2.MORPH_OPEN,kernel)
cv2.imshow('res tappabuchi',res)
cv2.waitKey()
rest = cv2.bitwise_not(res)
print(rest)
cv2.imshow('rest tappabuchi 2',rest)
cv2.waitKey()
skel = skeletonize(rest)
skel = skel.astype(np.uint8)*255
print(skel)
cv2.imshow('skel',skel)
cv2.waitKey(0)
imgbnbin = m.binary(skel)
#FINDING junction and PRUNING
print("mohatas imgbnbin")
print(imgbnbin)
b2 = m.thin(imgbnbin)
b3 = m.thin(b2, m.endpoints('homotopic'), 15) # prune small branches, may need tuning
outputimage = m.overlay(imgbnbin, b3)
mahotas.imsave('outputs.png', outputimage)
# structuring elements to search for 3-connected pixels
seA1 = array([[False, True, False],
[False, True, False],
[ True, False, True]], dtype=bool)
seB1 = array([[False, False, False],
[ True, False, True],
[False, True, False]], dtype=bool)
seA2 = array([[False, True, False],
[ True, True, True],
[False, False, False]], dtype=bool)
seB2 = array([[ True, False, True],
[False, False, False],
[False, True, False]], dtype=bool)
# hit or miss templates from these SEs
hmt1 = m.se2hmt(seA1, seB1)
hmt2 = m.se2hmt(seA2, seB2)
# locate 3-connected regions
b4 = m.union(m.supcanon(b3, hmt1), m.supcanon(b3, hmt2))
# dilate to merge nearby hits
b5 = m.dilate(b4, m.sedisk(10))
# locate centroids
b6 = m.blob(m.label(b5), 'centroid')
outputimage = m.overlay(imgbnbin, m.dilate(b6,m.sedisk(5)))
mahotas.imsave('output.png', outputimage)