LRUキャッシング(C ++)の優れた設計について質問するために、私はすでにしばらく前に投稿しました。あなたはそこに質問、答えといくつかのコードを見つけることができます:
私は今、このコードを(pthreadを使用して)マルチスレッド化しようとしましたが、いくつかの本当に予期しない結果が得られました。ロックを使用する前に、各スレッドが独自のキャッシュにアクセスするシステムを作成しました(コードを参照)。このコードは4コアプロセッサで実行します。1スレッドと4スレッドで実行してみました。1つのスレッドで実行する場合、キャッシュで100万回のルックアップを実行し、4つのスレッドで各スレッドが25万回のルックアップを実行します。私は4つのスレッドで時間の短縮を期待していましたが、その逆です。1スレッドは2.2秒で実行され、4スレッドは6秒以上で実行されますか?この結果を理解することはできません。
私のコードに何か問題がありますか?これはどういうわけか説明できますか(スレッド管理には時間がかかります)。専門家からのフィードバックがあれば素晴らしいと思います。どうもありがとう -
私はこのコードを次のようにコンパイルします:c ++ -o cache cache.cpp -std = c ++ 0x -O3 -lpthread
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <errno.h>
#include <sys/time.h>
#include <list>
#include <cstdlib>
#include <cstdio>
#include <memory>
#include <list>
#include <unordered_map>
#include <stdint.h>
#include <iostream>
typedef uint32_t data_key_t;
using namespace std;
//using namespace std::tr1;
class TileData
{
public:
data_key_t theKey;
float *data;
static const uint32_t tileSize = 32;
static const uint32_t tileDataBlockSize;
TileData(const data_key_t &key) : theKey(key), data(NULL)
{
float *data = new float [tileSize * tileSize * tileSize];
}
~TileData()
{
/* std::cerr << "delete " << theKey << std::endl; */
if (data) delete [] data;
}
};
typedef shared_ptr<TileData> TileDataPtr; // automatic memory management!
TileDataPtr loadDataFromDisk(const data_key_t &theKey)
{
return shared_ptr<TileData>(new TileData(theKey));
}
class CacheLRU
{
public:
list<TileDataPtr> linkedList;
unordered_map<data_key_t, TileDataPtr> hashMap;
CacheLRU() : cacheHit(0), cacheMiss(0) {}
TileDataPtr getData(data_key_t theKey)
{
unordered_map<data_key_t, TileDataPtr>::const_iterator iter = hashMap.find(theKey);
if (iter != hashMap.end()) {
TileDataPtr ret = iter->second;
linkedList.remove(ret);
linkedList.push_front(ret);
++cacheHit;
return ret;
}
else {
++cacheMiss;
TileDataPtr ret = loadDataFromDisk(theKey);
linkedList.push_front(ret);
hashMap.insert(make_pair<data_key_t, TileDataPtr>(theKey, ret));
if (linkedList.size() > MAX_LRU_CACHE_SIZE) {
const TileDataPtr dropMe = linkedList.back();
hashMap.erase(dropMe->theKey);
linkedList.remove(dropMe);
}
return ret;
}
}
static const uint32_t MAX_LRU_CACHE_SIZE = 100;
uint32_t cacheMiss, cacheHit;
};
int numThreads = 1;
void *testCache(void *data)
{
struct timeval tv1, tv2;
// Measuring time before starting the threads...
double t = clock();
printf("Starting thread, lookups %d\n", (int)(1000000.f / numThreads));
CacheLRU *cache = new CacheLRU;
for (uint32_t i = 0; i < (int)(1000000.f / numThreads); ++i) {
int key = random() % 300;
TileDataPtr tileDataPtr = cache->getData(key);
}
std::cerr << "Time (sec): " << (clock() - t) / CLOCKS_PER_SEC << std::endl;
delete cache;
}
int main()
{
int i;
pthread_t thr[numThreads];
struct timeval tv1, tv2;
// Measuring time before starting the threads...
gettimeofday(&tv1, NULL);
#if 0
CacheLRU *c1 = new CacheLRU;
(*testCache)(c1);
#else
for (int i = 0; i < numThreads; ++i) {
pthread_create(&thr[i], NULL, testCache, (void*)NULL);
//pthread_detach(thr[i]);
}
for (int i = 0; i < numThreads; ++i) {
pthread_join(thr[i], NULL);
//pthread_detach(thr[i]);
}
#endif
// Measuring time after threads finished...
gettimeofday(&tv2, NULL);
if (tv1.tv_usec > tv2.tv_usec)
{
tv2.tv_sec--;
tv2.tv_usec += 1000000;
}
printf("Result - %ld.%ld\n", tv2.tv_sec - tv1.tv_sec,
tv2.tv_usec - tv1.tv_usec);
return 0;
}