3

実行速度がかなり遅いクエリがあります。問題は、いくつかの大きなテーブルにまたがって参加していることだと思いますが、それでもパフォーマンスが向上することを期待していました。以下のクエリと EXPLAIN ANALYZE:

SELECT
    "m_advertsnapshot"."id",
    "m_advertsnapshot"."created",
    "m_advertsnapshot"."modified",
    "m_advertsnapshot"."snapshot_timestamp",
    "m_advertsnapshot"."source_name",
    COUNT(CASE m_advert.widget_listing_id IS NULL and m_advert.height IS NULL WHEN True THEN 1 ELSE null END) AS "adh_count_with_no_wl_and_missing_height",
    COUNT(CASE m_advert.widget_listing_id IS NULL and m_advert.height IS NOT NULL and m_advert.colour_id IS NOT NULL and m_advert.ctype IS NOT NULL WHEN True THEN 1 ELSE null END) AS "adh_count_with_no_wl_and_has_height_plate_ctype",
    COUNT(CASE m_advert.widget_listing_id IS NULL and m_advert.height IS NULL and m_advert.colour_id is NULL and m_advert.ctype is NULL  WHEN True THEN 1 ELSE null END) AS "adh_count_with_no_wl_and_missing_height_and_missing_plate_c268",
    COUNT("m_adverthistory"."id") AS "adh_count",
    COUNT(CASE m_advert.widget_listing_id IS NULL and m_advert.height IS NULL and m_advert.colour_id is NULL WHEN True THEN 1 ELSE null END) AS "adh_count_with_no_wl_and_missing_height_and_missing_plate",
    COUNT("m_advert"."widget_listing_id") AS "adh_count_with_wl"
FROM "m_advertsnapshot"
    LEFT OUTER JOIN "m_adverthistory" ON ("m_advertsnapshot"."id" = "m_adverthistory"."advert_snapshot_id")
    LEFT OUTER JOIN "m_advert" ON ("m_adverthistory"."advert_id" = "m_advert"."id")
GROUP BY
    "m_advertsnapshot"."id",
    "m_advertsnapshot"."created",
    "m_advertsnapshot"."modified",
    "m_advertsnapshot"."snapshot_timestamp",
    "m_advertsnapshot"."source_name"
ORDER BY
    "m_advertsnapshot"."snapshot_timestamp" DESC



"Sort  (cost=796180.41..796180.90 rows=196 width=72) (actual time=18051.504..18051.519 rows=196 loops=1)"
"  Sort Key: m_advertsnapshot.snapshot_timestamp"
"  Sort Method: quicksort  Memory: 60kB"
"  ->  HashAggregate  (cost=796170.99..796172.95 rows=196 width=72) (actual time=18051.330..18051.396 rows=196 loops=1)"
"        ->  Hash Right Join  (cost=227052.68..622950.33 rows=6298933 width=72) (actual time=2082.551..12166.226 rows=6298933 loops=1)"
"              Hash Cond: (m_adverthistory.advert_snapshot_id = m_advertsnapshot.id)"
"              ->  Hash Left Join  (cost=227045.27..536332.59 rows=6298933 width=24) (actual time=2082.483..9971.996 rows=6298933 loops=1)"
"                    Hash Cond: (m_adverthistory.advert_id = m_advert.id)"
"                    ->  Seq Scan on m_adverthistory  (cost=0.00..121858.33 rows=6298933 width=12) (actual time=0.003..1644.060 rows=6298933 loops=1)"
"                    ->  Hash  (cost=202575.12..202575.12 rows=1332812 width=20) (actual time=2080.897..2080.897 rows=1332812 loops=1)"
"                          Buckets: 2048  Batches: 128  Memory Usage: 525kB"
"                          ->  Seq Scan on m_advert  (cost=0.00..202575.12 rows=1332812 width=20) (actual time=0.007..1564.220 rows=1332812 loops=1)"
"              ->  Hash  (cost=4.96..4.96 rows=196 width=52) (actual time=0.062..0.062 rows=196 loops=1)"
"                    Buckets: 1024  Batches: 1  Memory Usage: 17kB"
"                    ->  Seq Scan on m_advertsnapshot  (cost=0.00..4.96 rows=196 width=52) (actual time=0.004..0.030 rows=196 loops=1)"
"Total runtime: 18051.730 ms"

postgres 9.2 を使用すると、クエリに 18 秒かかります。テーブルのサイズは次のとおりです。

m_advertsnapshot - 196 rows
m_adverthistory - 6,298,933 rows
m_advert - 1,332,812 rows

DDL:

-- m_advertsnapshot

CREATE TABLE m_advertsnapshot
(
  id serial NOT NULL,
  snapshot_timestamp timestamp with time zone NOT NULL,
  source_name character varying(50),
  CONSTRAINT m_advertsnapshot_pkey PRIMARY KEY (id),
  CONSTRAINT m_advertsnapshot_source_name_6a9a437077520191_uniq UNIQUE (source_name, snapshot_timestamp)
)
WITH (
  OIDS=FALSE
);

CREATE INDEX m_advertsnapshot_snapshot_timestamp
  ON m_advertsnapshot
  USING btree
  (snapshot_timestamp);

-- m_adverthistory

CREATE TABLE m_adverthistory
(
  id serial NOT NULL,
  advert_id integer NOT NULL,
  advert_snapshot_id integer NOT NULL,
  observed_timestamp timestamp with time zone NOT NULL,
  CONSTRAINT m_adverthistory_pkey PRIMARY KEY (id),
  CONSTRAINT advert_id_refs_id_30735d9eef85241c FOREIGN KEY (advert_id)
      REFERENCES m_advert (id) MATCH SIMPLE
      ON UPDATE NO ACTION ON DELETE NO ACTION DEFERRABLE INITIALLY DEFERRED,
  CONSTRAINT advert_snapshot_id_refs_id_55d3986f4f270624 FOREIGN KEY (advert_snapshot_id)
      REFERENCES m_advertsnapshot (id) MATCH SIMPLE
      ON UPDATE NO ACTION ON DELETE NO ACTION DEFERRABLE INITIALLY DEFERRED,
  CONSTRAINT m_adverthistory_advert_id_13fa0dae39e78983_uniq UNIQUE (advert_id, advert_snapshot_id)
)
WITH (
  OIDS=FALSE
);

CREATE INDEX m_adverthistory_advert_id
  ON m_adverthistory
  USING btree
  (advert_id);

CREATE INDEX m_adverthistory_advert_snapshot_id
  ON m_adverthistory
  USING btree
  (advert_snapshot_id);

-- m_advert

CREATE TABLE m_advert
(
  id serial NOT NULL,
  widget_listing_id integer,
  height integer,
  ctype integer,
  colour_id integer,
  CONSTRAINT m_advert_pkey PRIMARY KEY (id),
  CONSTRAINT "colour_id_refs_id_1e4e2dac0183b419" FOREIGN KEY (colour_id)
      REFERENCES colour ("id") MATCH SIMPLE
      ON UPDATE NO ACTION ON DELETE NO ACTION DEFERRABLE INITIALLY DEFERRED,
  CONSTRAINT widget_listing_id_refs_id_5a7e62d0d4f48013 FOREIGN KEY (widget_listing_id)
      REFERENCES m_widgetlisting (id) MATCH SIMPLE
      ON UPDATE NO ACTION ON DELETE NO ACTION DEFERRABLE INITIALLY DEFERRED,

)
WITH (
  OIDS=FALSE
);

CREATE INDEX m_advert_advert_seller_id
  ON m_advert
  USING btree
  (advert_seller_id);

CREATE INDEX m_advert_colour_id
  ON m_advert
  USING btree
  (colour_id);

CREATE INDEX m_advert_widget_listing_id
  ON m_advert
  USING btree
  (widget_listing_id);

これのパフォーマンスを改善する方法についてのアイデアをいただければ幸いです。

ありがとう!

4

1 に答える 1

2
  • スキーマは合理的に見えます (クエリの場合、実際にはインデックスは必要なく、一部のインデックスは既に FK 制約でカバーされています)。
  • ジャンクション テーブルには代理キーは必要ありません (ただし害はありません)。
  • クエリが遅い本当の理由は、集計を計算するためにすべてのテーブルのすべての行が必要だからです。100% のデータが必要な場合、インデックスはあまり役に立ちません。
  • 追加の制約 (たとえば、snapshot_timestamp >= some_date など) を追加すると、インデックスを使用する別の計画が発生する可能性があります。
于 2013-04-25T18:46:52.257 に答える