素数を生成する最速の方法は、ふるいを使用することです。ここでは、セグメント化されたエラトステネスのふるいを使用して、素数を最大値なしで順番に 1 つずつ生成します。ps
は、現在の最大値より小さいふるい素数のリストであり、現在のセグメント内qs
の対応する最小倍数のオフセットです。ps
def genPrimes():
def isPrime(n):
if n % 2 == 0: return n == 2
d = 3
while d * d <= n:
if n % d == 0: return False
d += 2
return True
def init(): # change to Sieve of Eratosthenes
ps, qs, sieve = [], [], [True] * 50000
p, m = 3, 0
while p * p <= 100000:
if isPrime(p):
ps.insert(0, p)
qs.insert(0, p + (p-1) / 2)
m += 1
p += 2
for i in xrange(m):
for j in xrange(qs[i], 50000, ps[i]):
sieve[j] = False
return m, ps, qs, sieve
def advance(m, ps, qs, sieve, bottom):
for i in xrange(50000): sieve[i] = True
for i in xrange(m):
qs[i] = (qs[i] - 50000) % ps[i]
p = ps[0] + 2
while p * p <= bottom + 100000:
if isPrime(p):
ps.insert(0, p)
qs.insert(0, (p*p - bottom - 1)/2)
m += 1
p += 2
for i in xrange(m):
for j in xrange(qs[i], 50000, ps[i]):
sieve[j] = False
return m, ps, qs, sieve
m, ps, qs, sieve = init()
bottom, i = 0, 1
yield 2
while True:
if i == 50000:
bottom = bottom + 100000
m, ps, qs, sieve = advance(m, ps, qs, sieve, bottom)
i = 0
elif sieve[i]:
yield bottom + i + i + 1
i += 1
else: i += 1
nの 4 乗根に限定されるため、簡単なisPrime
試行除算で十分です。セグメント サイズは任意に 100000 に設定されます。この方法では、素数をふるいに O(sqrt n ) のスペースと、ふるいに一定のスペースが必要です。2 * delta
isPrime
低速ですが、ホイールを使用して素数候補を生成し、基数 2、7 、および 61 に対する強力な疑似素数テストに基づいて候補の素数性をテストするためのスペースを節約できます。これは 2^32 まで有効です。
def genPrimes(): # valid to 2^32
def isPrime(n):
def isSpsp(n, a):
d, s = n-1, 0
while d % 2 == 0:
d /= 2; s += 1
t = pow(a,d,n)
if t == 1: return True
while s > 0:
if t == n-1: return True
t = (t*t) % n; s -= 1
return False
for p in [2, 7, 61]:
if n % p == 0: return n == p
if not isSpsp(n, p): return False
return True
w, wheel = 0, [1,2,2,4,2,4,2,4,6,2,6,4,2,4,\
6,6,2,6,4,2,6,4,6,8,4,2,4,2,4,8,6,4,6,\
2,4,6,2,6,6,4,2,4,6,2,6,4,2,4,2,10,2,10]
p = 2; yield p
while True:
p = p + wheel[w]
w = 4 if w == 51 else w + 1
if isPrime(p): yield p
素数を使ったプログラミングに興味がある場合は、私のブログでこのエッセイをお勧めします。