1

重合系の次の 3 因子データ (IXJXK) があります: Z (23x4x3)

Z(:,:,1) = [0 6.70 NaN NaN
0.14 5.79 27212.52 17735.36
0.26 5.04 26545.98 17279.95
0.35 4.43 26007.91 16902.22
0.43 3.92 25567.61 16586.18
0.49 3.50 25202.48 16319.65
0.54 3.15 24898.99 16094.87
0.59 2.85 24648.07 15906.19
0.63 2.60 24441.06 15748.28
0.66 2.38 24270.42 15616.51
0.68 2.20 24130.05 15506.90
0.71 2.05 24014.78 15415.87
0.73 1.92 23921.74 15341.59
0.74 1.80 23847.57 15281.63
0.76 1.70 23789.06 15233.54
0.77 1.61 23744.29 15195.99
0.78 1.54 23710.83 15167.01
0.79 1.47 23687.05 15145.38
0.80 1.41 23671.47 15129.72
0.81 1.36 23662.99 15119.14
0.81 1.31 23660.58 15112.77
0.82 1.27 23663.32 15109.86
0.82 1.23 23670.44 15109.74];

Z(:,:,2) = [0 6.70 NaN NaN
0.17 5.63 24826.03 16191.26
0.30 4.80 24198.87 15757.83
0.40 4.14 23720.27 15417.52
0.47 3.61 23347.38 15147.16
0.54 3.19 23058.01 14933.52
0.59 2.85 22836.18 14766.65
0.63 2.57 22667.24 14637.38
0.66 2.34 22539.27 14537.68
0.69 2.15 22445.60 14463.08
0.71 2.00 22379.90 14409.04
0.73 1.87 22336.70 14371.44
0.75 1.76 22311.74 14347.04
0.76 1.66 22301.57 14333.13
0.77 1.58 22303.32 14327.31
0.78 1.51 22314.83 14327.75
0.79 1.45 22334.27 14333.00
0.80 1.40 22360.11 14341.81
0.81 1.36 22391.09 14353.22
0.81 1.32 22426.11 14366.39
0.82 1.28 22464.22 14380.67
0.82 1.25 22504.61 14395.53
0.82 1.23 22546.61 14410.57];

Z(:,:,3) = [0 6.70 NaN NaN
0.19 5.45 22687.71 14805.97
0.34 4.53 22119.24 14408.55
0.44 3.84 21720.37 14120.95
0.52 3.31 21437.68 13912.54
0.58 2.90 21244.60 13766.39
0.63 2.59 21117.60 13667.05
0.66 2.34 21040.03 13602.91
0.69 2.14 21000.70 13565.85
0.72 1.98 20990.89 13549.24
0.73 1.85 21003.53 13547.54
0.75 1.74 21033.19 13556.41
0.76 1.65 21075.85 13572.54
0.77 1.58 21128.37 13593.46
0.78 1.52 21188.17 13617.25
0.79 1.47 21253.16 13642.44
0.80 1.42 21321.69 13668.02
0.80 1.39 21392.34 13693.18
0.81 1.36 21463.83 13717.38
0.81 1.33 21535.27 13740.33
0.81 1.31 21605.87 13761.81
0.82 1.29 21674.84 13781.70
0.82 1.27 21741.68 13799.97];

ここで、I は時間 (y 軸)、J は変数 (x 軸)、K はバッチ (z 軸) です。ただし、このデータを使用して PCA および PLS 分析を実行したいので、この (時間 x 変数 x バッチ) 次元を (バッチ (I) x 変数 (J) x 時間 (K)) 次元に変更する必要があります。新しい Z は Z(3 x 4 x 23) です。

これを実行するには、次のコマンドを使用して、各スラブ (K 次元) から最初の行の値を抽出し、それらを新しいマトリックス スラブとして再配置します。

T1=squeeze(Z(1,:,:))’

したがって、for ループを使用して 23 個のスラブすべての結果を取得します。しかし、最後の結果を除いて、結果をワークスペースに保存することはできません(方法がわからない)。私が使用したコマンド:

[I,J,K] = size(Z);
SLAB = zeros(K,J,I); %preallocating the matrix; where I=23,J=4,K=3
for t = 1 : I %here I = 23
slab = squeeze(Z(t,:,:))’; %removing semicolon here I can see the wanted results in command window
SLAB = slab;
end

ここにいる誰かがこれについて私を助けてくれることを願っています。ありがとうございました

4

1 に答える 1

0

解決策を見つけました。

スラブのサイズは (K,J,I) になることがわかっているため、for ループで同じ形式を指定する必要があります。

[I,J,K] = size(Z);
SLAB = zeros(K,J,I); %preallocating the matrix; where I=23,J=4,K=3
for t = 1 : I %here I = 23
slab(:,:,t) = squeeze(Z(t,:,:))’; 
end
于 2013-04-04T03:47:35.403 に答える