155

C++ でコンパイル時に文字列を作成および操作できることには、いくつかの便利なアプリケーションがあります。C++ でコンパイル時の文字列を作成することは可能ですが、文字列を文字の可変長シーケンスとして宣言する必要があるため、プロセスは非常に面倒です。

using str = sequence<'H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '!'>;

文字列の連結、部分文字列の抽出などの操作は、文字列に対する操作として簡単に実装できます。コンパイル時の文字列をより便利に宣言することは可能ですか? そうでない場合、コンパイル時の文字列の便利な宣言を可能にする提案が進行中ですか?

既存のアプローチが失敗する理由

理想的には、次のようにコンパイル時の文字列を宣言できるようにしたいと考えています。

// Approach 1
using str1 = sequence<"Hello, world!">;

または、ユーザー定義リテラルを使用して、

// Approach 2
constexpr auto str2 = "Hello, world!"_s;

どこdecltype(str2)constexprコンストラクタがありますか。次のことができるという事実を利用して、アプローチ 1 のより複雑なバージョンを実装することが可能です。

template <unsigned Size, const char Array[Size]>
struct foo;

ただし、配列には外部リンケージが必要になるため、アプローチ 1 を機能させるには、次のように記述する必要があります。

/* Implementation of array to sequence goes here. */

constexpr const char str[] = "Hello, world!";

int main()
{
    using s = string<13, str>;
    return 0;
}

言うまでもなく、これは非常に不便です。アプローチ 2 は、実際には実装できません。( ) リテラル演算子を宣言する場合constexpr、戻り値の型をどのように指定しますか? 可変長の文字シーケンスを返す演算子が必要なので、const char*パラメーターを使用して戻り値の型を指定する必要があります。

constexpr auto
operator"" _s(const char* s, size_t n) -> /* Some metafunction using `s` */

sではないため、コンパイル エラーが発生しますconstexpr。以下を実行してこれを回避しようとしても、あまり役に立ちません。

template <char... Ts>
constexpr sequence<Ts...> operator"" _s() { return {}; }

標準では、この特定のリテラル演算子形式は整数型と浮動小数点型用に予約されていると規定されています。うまくいきます123_sが、そうでabc_sはありません。ユーザー定義のリテラルを完全に捨てて、通常のconstexpr関数だけを使用するとどうなるでしょうか?

template <unsigned Size>
constexpr auto
string(const char (&array)[Size]) -> /* Some metafunction using `array` */

前と同じように、配列 (現在はconstexpr関数のパラメーター) 自体がもはやconstexpr型ではないという問題に遭遇します。

文字列と文字列のサイズを引数として取り、文字列内の文字からなるシーケンスを返す C プリプロセッサ マクロを定義できるはずだと思います (. 、文字列化BOOST_PP_FOR、配列添字などを使用)。ただし、そのようなマクロを実装する時間 (または十分な関心) がありません =)

4

19 に答える 19

5

誰も私の他の答えを気に入っていないようです:-<。ここでは、str_const を実数型に変換する方法を示します。

#include <iostream>
#include <utility>

// constexpr string with const member functions
class str_const { 
private:
    const char* const p_;
    const std::size_t sz_;
public:

    template<std::size_t N>
    constexpr str_const(const char(&a)[N]) : // ctor
    p_(a), sz_(N-1) {}

    constexpr char operator[](std::size_t n) const { 
        return n < sz_ ? p_[n] :
        throw std::out_of_range("");
    }

    constexpr std::size_t size() const { return sz_; } // size()
};


template <char... letters>
struct string_t{
    static char const * c_str() {
        static constexpr char string[]={letters...,'\0'};
        return string;
    }
};

template<str_const const& str,std::size_t... I>
auto constexpr expand(std::index_sequence<I...>){
    return string_t<str[I]...>{};
}

template<str_const const& str>
using string_const_to_type = decltype(expand<str>(std::make_index_sequence<str.size()>{}));

constexpr str_const hello{"Hello World"};
using hello_t = string_const_to_type<hello>;

int main()
{
//    char c = hello_t{};        // Compile error to print type
    std::cout << hello_t::c_str();
    return 0;
}

clang++ -stdlib=libc++ -std=c++14 (clang 3.7) でコンパイル

于 2015-12-16T12:37:16.560 に答える
5

これは、渡されたコンパイル時の文字列ごとに std::tuple<char...> を作成するための簡潔な C++14 ソリューションです。

#include <tuple>
#include <utility>


namespace detail {
        template <std::size_t ... indices>
        decltype(auto) build_string(const char * str, std::index_sequence<indices...>) {
                return std::make_tuple(str[indices]...);
        }
}

template <std::size_t N>
constexpr decltype(auto) make_string(const char(&str)[N]) {
        return detail::build_string(str, std::make_index_sequence<N>());
}

auto HelloStrObject = make_string("hello");

そして、これは、他のマクロ ポストから削除された、一意のコンパイル時の型を作成するためのものです。

#include <utility>

template <char ... Chars>
struct String {};

template <typename Str, std::size_t ... indices>
decltype(auto) build_string(std::index_sequence<indices...>) {
        return String<Str().chars[indices]...>();
}

#define make_string(str) []{\
        struct Str { const char * chars = str; };\
        return build_string<Str>(std::make_index_sequence<sizeof(str)>());\
}()

auto HelloStrObject = make_string("hello");

ユーザー定義のリテラルがまだこれに使用できないのは本当に残念です。

于 2015-09-20T01:50:55.240 に答える
5

同僚から、コンパイル時にメモリ内の文字列を連結するように言われました。コンパイル時に個々の文字列をインスタンス化することも含まれます。完全なコード リストは次のとおりです。

//Arrange strings contiguously in memory at compile-time from string literals.
//All free functions prefixed with "my" to faciliate grepping the symbol tree
//(none of them should show up).

#include <iostream>

using std::size_t;

//wrapper for const char* to "allocate" space for it at compile-time
template<size_t N>
struct String {
    //C arrays can only be initialised with a comma-delimited list
    //of values in curly braces. Good thing the compiler expands
    //parameter packs into comma-delimited lists. Now we just have
    //to get a parameter pack of char into the constructor.
    template<typename... Args>
    constexpr String(Args... args):_str{ args... } { }
    const char _str[N];
};

//takes variadic number of chars, creates String object from it.
//i.e. myMakeStringFromChars('f', 'o', 'o', '\0') -> String<4>::_str = "foo"
template<typename... Args>
constexpr auto myMakeStringFromChars(Args... args) -> String<sizeof...(Args)> {
    return String<sizeof...(args)>(args...);
}

//This struct is here just because the iteration is going up instead of
//down. The solution was to mix traditional template metaprogramming
//with constexpr to be able to terminate the recursion since the template
//parameter N is needed in order to return the right-sized String<N>.
//This class exists only to dispatch on the recursion being finished or not.
//The default below continues recursion.
template<bool TERMINATE>
struct RecurseOrStop {
    template<size_t N, size_t I, typename... Args>
    static constexpr String<N> recurseOrStop(const char* str, Args... args);
};

//Specialisation to terminate recursion when all characters have been
//stripped from the string and converted to a variadic template parameter pack.
template<>
struct RecurseOrStop<true> {
    template<size_t N, size_t I, typename... Args>
    static constexpr String<N> recurseOrStop(const char* str, Args... args);
};

//Actual function to recurse over the string and turn it into a variadic
//parameter list of characters.
//Named differently to avoid infinite recursion.
template<size_t N, size_t I = 0, typename... Args>
constexpr String<N> myRecurseOrStop(const char* str, Args... args) {
    //template needed after :: since the compiler needs to distinguish
    //between recurseOrStop being a function template with 2 paramaters
    //or an enum being compared to N (recurseOrStop < N)
    return RecurseOrStop<I == N>::template recurseOrStop<N, I>(str, args...);
}

//implementation of the declaration above
//add a character to the end of the parameter pack and recurse to next character.
template<bool TERMINATE>
template<size_t N, size_t I, typename... Args>
constexpr String<N> RecurseOrStop<TERMINATE>::recurseOrStop(const char* str,
                                                            Args... args) {
    return myRecurseOrStop<N, I + 1>(str, args..., str[I]);
}

//implementation of the declaration above
//terminate recursion and construct string from full list of characters.
template<size_t N, size_t I, typename... Args>
constexpr String<N> RecurseOrStop<true>::recurseOrStop(const char* str,
                                                       Args... args) {
    return myMakeStringFromChars(args...);
}

//takes a compile-time static string literal and returns String<N> from it
//this happens by transforming the string literal into a variadic paramater
//pack of char.
//i.e. myMakeString("foo") -> calls myMakeStringFromChars('f', 'o', 'o', '\0');
template<size_t N>
constexpr String<N> myMakeString(const char (&str)[N]) {
    return myRecurseOrStop<N>(str);
}

//Simple tuple implementation. The only reason std::tuple isn't being used
//is because its only constexpr constructor is the default constructor.
//We need a constexpr constructor to be able to do compile-time shenanigans,
//and it's easier to roll our own tuple than to edit the standard library code.

//use MyTupleLeaf to construct MyTuple and make sure the order in memory
//is the same as the order of the variadic parameter pack passed to MyTuple.
template<typename T>
struct MyTupleLeaf {
    constexpr MyTupleLeaf(T value):_value(value) { }
    T _value;
};

//Use MyTupleLeaf implementation to define MyTuple.
//Won't work if used with 2 String<> objects of the same size but this
//is just a toy implementation anyway. Multiple inheritance guarantees
//data in the same order in memory as the variadic parameters.
template<typename... Args>
struct MyTuple: public MyTupleLeaf<Args>... {
    constexpr MyTuple(Args... args):MyTupleLeaf<Args>(args)... { }
};

//Helper function akin to std::make_tuple. Needed since functions can deduce
//types from parameter values, but classes can't.
template<typename... Args>
constexpr MyTuple<Args...> myMakeTuple(Args... args) {
    return MyTuple<Args...>(args...);
}

//Takes a variadic list of string literals and returns a tuple of String<> objects.
//These will be contiguous in memory. Trailing '\0' adds 1 to the size of each string.
//i.e. ("foo", "foobar") -> (const char (&arg1)[4], const char (&arg2)[7]) params ->
//                       ->  MyTuple<String<4>, String<7>> return value
template<size_t... Sizes>
constexpr auto myMakeStrings(const char (&...args)[Sizes]) -> MyTuple<String<Sizes>...> {
    //expands into myMakeTuple(myMakeString(arg1), myMakeString(arg2), ...)
    return myMakeTuple(myMakeString(args)...);
}

//Prints tuple of strings
template<typename T> //just to avoid typing the tuple type of the strings param
void printStrings(const T& strings) {
    //No std::get or any other helpers for MyTuple, so intead just cast it to
    //const char* to explore its layout in memory. We could add iterators to
    //myTuple and do "for(auto data: strings)" for ease of use, but the whole
    //point of this exercise is the memory layout and nothing makes that clearer
    //than the ugly cast below.
    const char* const chars = reinterpret_cast<const char*>(&strings);
    std::cout << "Printing strings of total size " << sizeof(strings);
    std::cout << " bytes:\n";
    std::cout << "-------------------------------\n";

    for(size_t i = 0; i < sizeof(strings); ++i) {
        chars[i] == '\0' ? std::cout << "\n" : std::cout << chars[i];
    }

    std::cout << "-------------------------------\n";
    std::cout << "\n\n";
}

int main() {
    {
        constexpr auto strings = myMakeStrings("foo", "foobar",
                                               "strings at compile time");
        printStrings(strings);
    }

    {
        constexpr auto strings = myMakeStrings("Some more strings",
                                               "just to show Jeff to not try",
                                               "to challenge C++11 again :P",
                                               "with more",
                                               "to show this is variadic");
        printStrings(strings);
    }

    std::cout << "Running 'objdump -t |grep my' should show that none of the\n";
    std::cout << "functions defined in this file (except printStrings()) are in\n";
    std::cout << "the executable. All computations are done by the compiler at\n";
    std::cout << "compile-time. printStrings() executes at run-time.\n";
}
于 2013-04-09T13:07:21.030 に答える
3

ユニークなコンパイル時の型を作成するための kacey のソリューションは、わずかな変更を加えることで、C++11 でも使用できます。

template <char... Chars>
struct string_t {};

namespace detail {
template <typename Str,unsigned int N,char... Chars>
struct make_string_t : make_string_t<Str,N-1,Str().chars[N-1],Chars...> {};

template <typename Str,char... Chars>
struct make_string_t<Str,0,Chars...> { typedef string_t<Chars...> type; };
} // namespace detail

#define CSTR(str) []{ \
    struct Str { const char *chars = str; }; \
    return detail::make_string_t<Str,sizeof(str)>::type(); \
  }()

使用する:

template <typename String>
void test(String) {
  // ... String = string_t<'H','e','l','l','o','\0'>
}

test(CSTR("Hello"));
于 2016-06-28T16:34:22.110 に答える
1

Howard Hinnantのアイデアに基づいて、2 つのリテラルを追加するリテラル クラスを作成できます。

template<int>
using charDummy = char;

template<int... dummy>
struct F
{
    const char table[sizeof...(dummy) + 1];
    constexpr F(const char* a) : table{ str_at<dummy>(a)..., 0}
    {

    }
    constexpr F(charDummy<dummy>... a) : table{ a..., 0}
    {

    }

    constexpr F(const F& a) : table{ a.table[dummy]..., 0}
    {

    }

    template<int... dummyB>
    constexpr F<dummy..., sizeof...(dummy)+dummyB...> operator+(F<dummyB...> b)
    {
        return { this->table[dummy]..., b.table[dummyB]... };
    }
};

template<int I>
struct get_string
{
    constexpr static auto g(const char* a) -> decltype( get_string<I-1>::g(a) + F<0>(a + I))
    {
        return get_string<I-1>::g(a) + F<0>(a + I);
    }
};

template<>
struct get_string<0>
{
    constexpr static F<0> g(const char* a)
    {
        return {a};
    }
};

template<int I>
constexpr auto make_string(const char (&a)[I]) -> decltype( get_string<I-2>::g(a) )
{
    return get_string<I-2>::g(a);
}

constexpr auto a = make_string("abc");
constexpr auto b = a+ make_string("def"); // b.table == "abcdef" 
于 2013-04-08T22:42:35.497 に答える