単純な逆伝播とワンホット エンコーディングを使用して、多層ニューラル ネットワークで 2D データを 3 つのクラスに分類しようとしています。増分学習をバッチ学習に変更した後、出力が 0 ( [0,0,0]
) に収束しました。これは、主に、より多くのデータを使用したり、学習速度を上げたりした場合に発生します。何か別のものを派生させる必要があるのか、それともコードにいくつかのバグを作ったのかはわかりません。
for each epoch: #pseudocode
for each input:
caluclate hiden neurons activations (logsig)
calculate output neurons activations (logsig)
#error propagation
for i in range(3):
error = (desired_out[i] - aktivations_out[i])
error_out[i] = error * deriv_logsig(aktivations_out[i])
t_weights_out = zip(*weights_out)
for i in range(hiden_neurons):
sum_error = sum(e*w for e, w in zip(error_out, t_weights_out[i]))
error_h[i] = sum_error * deriv_logsig(input_out[i])
#cumulate deltas
for i in range(len(weights_out)):
delta_out[i] = [d + x * coef * error_out[i] for d, x in zip(delta_out[i], input_out)]
for i in range(len(weights_h)):
delta_h[i] = [d + x * coef * error_h[i] for d, x in zip(delta_h[i], input)]
#batch learning after epoch
for i in range(len(weights_out)):
weights_out[i] = [w + delta for w, delta in zip(weights_out[i], delta_out[i])]
for i in range(len(weights_h)):
weights_h[i] = [w + delta for w, delta in zip(weights_h[i], delta_h[i])]