正規表現は有限状態マシンによって定義されるため、そのようなマシンで自動的に推論できる何かが存在するのではないかと考え、それはこの作業のために再利用するのに適していました...そしてclojure.core.logic が提供されました
そこで、この正規表現文法の定義を調べて(残念ながら {} 量指定子がありませんが、コードに簡単に追加できるはずです)、これを Java エスケープに適合させ、この 110 行の clojure プログラムを作成しました。
(ns regexp-unfolder.core
(:require [instaparse.core :as insta])
(:require [clojure.core.logic :as l])
(:require [clojure.set :refer [union difference]])
(:gen-class :methods [#^{:static true} [unfold [String] clojure.lang.LazySeq]])
)
(def parse-regexp (insta/parser
"re = union | simple-re?
union = re '|' simple-re
simple-re = concat | base-re
concat = simple-re base-re
base-re = elementary-re | star | plus
star = elementary-re '*'
plus = elementary-re '+'
elementary-re = group | char | '$' | any | set
any = '.'
group = '(' re ')'
set = positive-set | negative-set
positive-set = '[' set-items ']'
negative-set = '[^' set-items ']'
set-items = set-item*
set-item = range | char
range = char '-' char
char = #'[^\\\\\\-\\[\\]]|\\.'" ))
(def printables (set (map char (range 32 127))))
(declare fns handle-first)
(defn handle-tree [q qto [ type & nodes]]
(if (nil? nodes)
[[q [""] qto]]
((fns type handle-first) q qto nodes)))
(defn star [q qto node &]
(cons [q [""] qto]
(handle-tree q q (first node))))
(defn plus [q qto node &]
(concat (handle-tree q qto (first node))
(handle-tree qto qto (first node))))
(defn any-char [q qto & _] [[q (vec printables) qto]] )
(defn char-range [[c1 _ c2]]
(let [extract-char (comp int first seq second)]
(set (map char (range (extract-char c1) (inc (extract-char c2)))))))
(defn items [nodes]
(union (mapcat
(fn [[_ [type & ns]]]
(if (= type :char)
#{(first ns)}
(char-range ns)))
(rest (second nodes)))))
(defn handle-set [q qto node &] [[q (vec (items node)) qto]])
(defn handle-negset [q qto node &] [[q (vec (difference printables (items node))) qto]])
(defn handle-range [q qto & nodes] [[q (vec (char-range nodes)) qto]])
(defn handle-char [q qto node &] [[q (vec node) qto]] )
(defn handle-concat [q qto nodes]
(let [syms (for [x (rest nodes)] (gensym q))]
(mapcat handle-tree (cons q syms) (concat syms [qto] ) nodes)
))
(defn handle-first [q qto [node & _]] (handle-tree q qto node))
(def fns {:concat handle-concat, :star star, :plus plus, :any any-char, :positive-set handle-set, :negative-set handle-negset, :char handle-char})
(l/defne transition-membero
[state trans newstate otransition]
([_ _ _ [state trans-set newstate]]
(l/membero trans trans-set)))
(defn transitiono [state trans newstate transitions]
(l/conde
[(l/fresh [f]
(l/firsto transitions f)
(transition-membero state trans newstate f))]
[(l/fresh [r]
(l/resto transitions r)
(transitiono state trans newstate r))])
)
(declare transitions)
;; Recognize a regexp finite state machine encoded in triplets [state, transition, next-state], adapted from a snippet made by Peteris Erins
(defn recognizeo
([input]
(recognizeo 'q0 input))
([q input]
(l/matche [input] ; start pattern matching on the input
(['("")]
(l/== q 'ok)) ; accept the empty string if we are in an accepting state
([[i . nput]]
(l/fresh [qto]
(transitiono q i qto transitions) ; assert it must be what we transition to qto from q with input symbol i
(recognizeo qto nput)))))) ; recognize the remainder
(defn -unfold [regex]
(def transitions
(handle-tree 'q0 'ok (parse-regexp regex)))
(map (partial apply str) (l/run* [q] (recognizeo q))))
core.logic で書かれているので、正規表現マッチャーとしても機能するように適応させるのはかなり簡単なはずです。
printables 文字を 32 から 126 ascii に制限しました。そうしないと、 などの正規表現を処理するのが面倒になり[^c]
ますが、非常に簡単に拡張できます...また、union、オプションのパターン、および\w、\s などの文字クラスのエスケープ
これは私がこれまで clojure で書いた最大のものですが、基本はうまくカバーされているようです...いくつかの例:
regexp-unfolder.core=> (-unfold "ba[rz]")
("bar" "baz")
regexp-unfolder.core=> (-unfold "[a-z3-7]")
("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z" "3" "4" "5" "6" "7")
regexp-unfolder.core=> (-unfold "[a-z3-7][01]")
("a0" "a1" "b0" "b1" "c0" "c1" "d0" "d1" "e0" "e1" "f0" "f1" "g0" "g1" "h0" "h1" "i0" "i1" "j0" "j1" "k0" "k1" "l0" "l1" "m0" "m1" "n0" "n1" "o0" "o1" "p0" "p1" "q0" "q1" "r0" "r1" "s0" "s1" "t0" "t1" "u0" "u1" "v0" "v1" "w0" "w1" "x0" "x1" "y0" "y1" "z0" "z1" "30" "31" "40" "41" "50" "51" "60" "70" "61" "71")
regexp-unfolder.core=> (-unfold "[^A-z]")
(" " "@" "!" "\"" "#" "$" "%" "&" "'" "(" ")" "*" "+" "," "-" "." "/" "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" ":" ";" "{" "<" "|" "=" "}" ">" "~" "?")
regexp-unfolder.core=> (take 20 (-unfold "[abc]*"))
("" "a" "b" "c" "aa" "ab" "ac" "ba" "ca" "aaa" "bb" "cb" "aab" "bc" "cc" "aac" "aba" "aca" "baa" "caa")
regexp-unfolder.core=> (take 20 (-unfold "a+b+"))
("ab" "aab" "abb" "abbb" "aaab" "abbbb" "aabb" "abbbbb" "abbbbbb" "aabbb" "abbbbbbb" "abbbbbbbb" "aaaab" "aabbbb" "aaabb" "abbbbbbbbb" "abbbbbbbbbb" "aabbbbb" "abbbbbbbbbbb" "abbbbbbbbbbbb")
このように始めたので、無限の出力も実装しました:)
誰かが興味を持っている場合は、ここにアップロードしました
unfold
明らかに、プレーンな古い Java から呼び出す方法の例を次に示します。
import static regexp_unfolder.core.unfold;
public class UnfolderExample{
public static void main(String[] args){
@SuppressWarnings("unchecked")
Iterable<String> strings = unfold("a+b+");
for (String s : strings){
System.out.println(s);
}
}
}