18

Xeger を使用すると、指定したパターンのランダムな値を取得できます。

String regex = "[0-9]{2}"; 
Xeger generator = new Xeger(regex);
String result = generator.generate();

指定された正規表現の有効な文字列をすべて返す方法があることを知りたいです。たとえば、 pattern:の場合、 からまで[0-9]{2}のすべての値を取得できます。0099

ありがとう

編集:

ここでは、+ や * のような無限の出力は考慮しません。有限正規表現のすべての値を取得するにはどうすればよいですか?

最終編集:

みんな、ありがとう!最後に、数千になる可能性があるため、すべての可能な値を考慮しているわけではありません。量を減らすために値の数として特定の数を制限します。

4

4 に答える 4

5

正規表現は有限状態マシンによって定義されるため、そのようなマシンで自動的に推論できる何かが存在するのではないかと考え、それはこの作業のために再利用するのに適していました...そしてclojure.core.logic が提供されました

そこで、この正規表現文法の定義を調べて(残念ながら {} 量指定子がありませんが、コードに簡単に追加できるはずです)、これを Java エスケープに適合させ、この 110 行の clojure プログラムを作成しました。

(ns regexp-unfolder.core
  (:require [instaparse.core :as insta])
  (:require [clojure.core.logic :as l])
  (:require [clojure.set :refer [union difference]])
  (:gen-class :methods [#^{:static true} [unfold [String] clojure.lang.LazySeq]])
)

(def parse-regexp (insta/parser 
             "re = union | simple-re?
             union = re '|' simple-re
             simple-re = concat | base-re
             concat = simple-re base-re
             base-re = elementary-re | star | plus
             star = elementary-re '*'
             plus = elementary-re '+'
             elementary-re = group | char | '$' | any | set
             any = '.'
             group = '(' re ')'
             set = positive-set | negative-set
             positive-set = '['  set-items ']'
             negative-set = '[^' set-items ']'
             set-items = set-item*
             set-item = range | char
             range = char '-' char
             char = #'[^\\\\\\-\\[\\]]|\\.'" ))

(def printables (set (map char (range 32 127))))

(declare fns handle-first)

(defn handle-tree [q qto [ type & nodes]]
  (if (nil? nodes)
    [[q [""] qto]]
    ((fns type handle-first) q qto nodes)))

(defn star [q qto node &]
  (cons [q [""] qto]
         (handle-tree q q (first node))))

(defn plus [q qto node &] 
  (concat (handle-tree q qto (first node))
          (handle-tree qto qto (first node))))

(defn any-char [q qto & _] [[q (vec printables) qto]] )

(defn char-range [[c1 _ c2]]
  (let [extract-char (comp int first seq second)]
    (set (map char (range (extract-char c1) (inc (extract-char c2)))))))

(defn items [nodes]
  (union (mapcat
    (fn [[_ [type & ns]]]
      (if (= type :char)
        #{(first ns)}        
        (char-range ns)))
    (rest (second nodes)))))

(defn handle-set [q qto node &] [[q (vec (items node)) qto]])

(defn handle-negset [q qto node &] [[q (vec (difference printables (items node))) qto]])

(defn handle-range [q qto & nodes] [[q (vec (char-range nodes)) qto]])

(defn handle-char [q qto node &] [[q (vec node) qto]] )

(defn handle-concat [q qto nodes] 
  (let [syms (for [x  (rest nodes)] (gensym q))]
    (mapcat handle-tree  (cons q syms) (concat syms [qto] ) nodes)
  ))

(defn handle-first [q qto [node & _]] (handle-tree q qto node))

(def fns {:concat handle-concat, :star star, :plus plus, :any any-char, :positive-set handle-set, :negative-set handle-negset, :char handle-char})

(l/defne transition-membero
  [state trans newstate otransition]
  ([_ _ _ [state trans-set newstate]]
     (l/membero trans trans-set)))

(defn transitiono [state trans newstate transitions]
  (l/conde
   [(l/fresh [f] 
             (l/firsto transitions f)
             (transition-membero state trans newstate f))]
   [(l/fresh [r]
             (l/resto transitions r)
             (transitiono state trans newstate r))])
  )

(declare transitions)

;; Recognize a regexp finite state machine encoded in triplets [state, transition, next-state], adapted from a snippet made by Peteris Erins

(defn recognizeo
  ([input]
     (recognizeo 'q0 input))
  ([q input]
     (l/matche [input] ; start pattern matching on the input
        (['("")]
           (l/== q 'ok)) ; accept the empty string if we are in an accepting state
        ([[i . nput]]
           (l/fresh [qto]
                  (transitiono q i qto transitions) ; assert it must be what we transition to qto from q with input symbol i
                  (recognizeo qto nput)))))) ; recognize the remainder


(defn -unfold [regex] 
  (def transitions 
    (handle-tree 'q0 'ok (parse-regexp regex)))
  (map (partial apply str) (l/run* [q] (recognizeo q))))

core.logic で書かれているので、正規表現マッチャーとしても機能するように適応させるのはかなり簡単なはずです。

printables 文字を 32 から 126 ascii に制限しました。そうしないと、 などの正規表現を処理するのが面倒になり[^c]ますが、非常に簡単に拡張できます...また、union、オプションのパターン、および\w、\s などの文字クラスのエスケープ

これは私がこれまで clojure で書いた最大のものですが、基本はうまくカバーされているようです...いくつかの例:

regexp-unfolder.core=> (-unfold "ba[rz]")
("bar" "baz")
regexp-unfolder.core=> (-unfold "[a-z3-7]")
("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z" "3" "4" "5" "6" "7")
regexp-unfolder.core=> (-unfold "[a-z3-7][01]")
("a0" "a1" "b0" "b1" "c0" "c1" "d0" "d1" "e0" "e1" "f0" "f1" "g0" "g1" "h0" "h1" "i0" "i1" "j0" "j1" "k0" "k1" "l0" "l1" "m0" "m1" "n0" "n1" "o0" "o1" "p0" "p1" "q0" "q1" "r0" "r1" "s0" "s1" "t0" "t1" "u0" "u1" "v0" "v1" "w0" "w1" "x0" "x1" "y0" "y1" "z0" "z1" "30" "31" "40" "41" "50" "51" "60" "70" "61" "71")
regexp-unfolder.core=> (-unfold "[^A-z]")
(" " "@" "!" "\"" "#" "$" "%" "&" "'" "(" ")" "*" "+" "," "-" "." "/" "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" ":" ";" "{" "<" "|" "=" "}" ">" "~" "?")
regexp-unfolder.core=> (take 20 (-unfold "[abc]*"))
("" "a" "b" "c" "aa" "ab" "ac" "ba" "ca" "aaa" "bb" "cb" "aab" "bc" "cc" "aac" "aba" "aca" "baa" "caa")
regexp-unfolder.core=> (take 20 (-unfold "a+b+"))
("ab" "aab" "abb" "abbb" "aaab" "abbbb" "aabb" "abbbbb" "abbbbbb" "aabbb" "abbbbbbb" "abbbbbbbb" "aaaab" "aabbbb" "aaabb" "abbbbbbbbb" "abbbbbbbbbb" "aabbbbb" "abbbbbbbbbbb" "abbbbbbbbbbbb")

このように始めたので、無限の出力も実装しました:)

誰かが興味を持っている場合は、ここにアップロードしました

unfold明らかに、プレーンな古い Java から呼び出す方法の例を次に示します。

import static regexp_unfolder.core.unfold;

public class UnfolderExample{
    public static void main(String[] args){
        @SuppressWarnings("unchecked")
        Iterable<String> strings = unfold("a+b+");
        for (String s : strings){
            System.out.println(s);
        }
    }
}
于 2013-04-13T22:19:20.247 に答える