スタック オーバーフローの皆さん、こんにちは。問題の解決策をしばらく探しましたが、何も見つからなかったので、投稿しようと思いました。
基本的に、アルファベット順にリストされた 196 か国のデータセットがあります。変数の 1 つは、その国の地域に応じて 1 ~ 10 の数字を割り当てます。たとえば、東ヨーロッパ = 1、西ヨーロッパ = 2、中東 = 3、南アメリカ = 4 などです。
データセットの視覚的表現を次に示します。
国名------国の地域------乳児死亡率
アフガニスタン------------3----------------------------180
アルゼンチン ---------------4------------------------65
フランス------------------2----------------------------12
ドイツ---------------2------------------------10
ポーランド------------------1-----------------------------------16
私がする必要があるのは、10 の地域をそれぞれのダミー変数に分割して、多変量回帰を実行して乳児死亡率に対する個々の効果を判断することです。
ダミー変数 (1 = 東ヨーロッパ、0 = その他) を作成するために必要なコードと、それらの効果を個別および多変量回帰の両方でテストする方法を考えていました。
これが単純またはばかげた質問のように思われる場合は申し訳ありませんが、私はRを使用するのにかなり慣れていません.
事前に助けてくれてありがとう。
編集:これは、要求された dput 出力です。
structure(list(Country.Name = structure(c(1L, 2L, 3L, 4L, 5L,
6L, 11L, 7L, 9L, 10L, 12L, 13L, 14L, 8L, 15L, 17L, 20L, 21L,
22L, 23L, 24L, 18L, 156L, 25L, 26L, 120L, 28L, 16L, 29L, 30L,
31L, 32L, 33L, 160L, 34L, 35L, 36L, 170L, 37L, 38L, 39L, 40L,
41L, 43L, 44L, 45L, 46L, 19L, 47L, 49L, 50L, 51L, 53L, 54L, 57L,
55L, 56L, 58L, 59L, 60L, 48L, 61L, 63L, 62L, 64L, 65L, 88L, 66L,
67L, 68L, 69L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L,
81L, 82L, 42L, 83L, 84L, 86L, 85L, 87L, 89L, 90L, 91L, 92L, 93L,
95L, 96L, 94L, 97L, 98L, 99L, 100L, 101L, 103L, 104L, 105L, 106L,
107L, 108L, 110L, 111L, 112L, 115L, 116L, 114L, 117L, 118L, 119L,
130L, 121L, 122L, 123L, 124L, 189L, 125L, 126L, 127L, 128L, 129L,
113L, 109L, 132L, 131L, 133L, 134L, 135L, 136L, 137L, 138L, 139L,
70L, 174L, 140L, 141L, 142L, 143L, 161L, 162L, 163L, 145L, 146L,
147L, 148L, 149L, 151L, 152L, 153L, 154L, 191L, 155L, 157L, 158L,
194L, 159L, 164L, 165L, 166L, 167L, 168L, 169L, 171L, 173L, 175L,
176L, 177L, 184L, 178L, 179L, 180L, 181L, 182L, 183L, 102L, 52L,
185L, 172L, 186L, 27L, 187L, 188L, 190L, 144L, 192L, 150L, 193L
), .Label = c("Afghanistan", "Albania", "Algeria", "Andorra",
"Angola", "Antigua and Barbuda", "Argentina", "Armenia", "Australia",
"Austria", "Azerbaijan", "Bahamas", "Bahrain", "Bangladesh",
"Barbados", "Belarus", "Belgium", "Belize", "Benin", "Bhutan",
"Bolivia", "Bosnia and Herzegovina", "Botswana", "Brazil", "Brunei",
"Bulgaria", "Burkina Faso", "Burundi", "Cambodia", "Cameroon",
"Canada", "Cape Verde", "Central African Republic", "Chad", "Chile",
"China", "Colombia", "Comoros", "Congo", "Congo, Democratic Republic",
"Costa Rica", "Cote d'Ivoire", "Croatia", "Cuba", "Cyprus", "Czech Republic",
"Denmark", "Djibouti", "Dominica", "Dominican Republic", "Ecuador",
"Egypt", "El Salvador", "Equatorial Guinea", "Eritrea", "Estonia",
"Ethiopia", "Fiji", "Finland", "France", "Gabon", "Gambia", "Georgia",
"Germany", "Ghana", "Greece", "Grenada", "Guatemala", "Guinea",
"Guinea-Bissau", "Guyana", "Haiti", "Honduras", "Hungary", "Iceland",
"India", "Indonesia", "Iran", "Iraq", "Ireland", "Israel", "Italy",
"Jamaica", "Japan", "Jordan", "Kazakhstan", "Kenya", "Kiribati",
"Korea, North", "Korea, South", "Kuwait", "Kyrgyzstan", "Laos",
"Latvia", "Lebanon", "Lesotho", "Liberia", "Libya", "Liechtenstein",
"Lithuania", "Luxembourg", "Macedonia", "Madagascar", "Malawi",
"Malaysia", "Maldives", "Mali", "Malta", "Marshall Islands",
"Mauritania", "Mauritius", "Mexico", "Micronesia", "Moldova",
"Monaco", "Mongolia", "Montenegro", "Morocco", "Mozambique",
"Myanmar", "Namibia", "Nauru", "Nepal", "Netherlands", "New Zealand",
"Nicaragua", "Niger", "Nigeria", "Norway", "Oman", "Pakistan",
"Palau", "Panama", "Papua New Guinea", "Paraguay", "Peru", "Philippines",
"Poland", "Portugal", "Qatar", "Romania", "Russia", "Rwanda",
"Samoa", "San Marino", "Sao Tome and Principe", "Saudi Arabia",
"Senegal", "Serbia", "Serbia and Montenegro", "Seychelles", "Sierra Leone",
"Singapore", "Slovakia", "Slovenia", "Solomon Islands", "Somalia",
"South Africa", "Spain", "Sri Lanka", "St Kitts and Nevis", "St Lucia",
"St Vincent and the Grenadines", "Sudan", "Suriname", "Swaziland",
"Sweden", "Switzerland", "Syria", "Taiwan", "Tajikistan", "Tanzania",
"Thailand", "Timor-Leste", "Togo", "Tonga", "Trinidad and Tobago",
"Tunisia", "Turkey", "Turkmenistan", "Tuvalu", "Uganda", "Ukraine",
"United Arab Emirates", "United Kingdom", "United States", "Uruguay",
"Uzbekistan", "Vanuatu", "Venezuela", "Vietnam", "Yemen", "Zambia",
"Zimbabwe"), class = "factor"), Country.Region = c(8L, 1L, 3L,
5L, 4L, 10L, 1L, 2L, 5L, 5L, 10L, 3L, 8L, 1L, 10L, 5L, 8L, 2L,
1L, 4L, 2L, 10L, 9L, 7L, 1L, 7L, 4L, 1L, 7L, 4L, 5L, 4L, 4L,
8L, 4L, 2L, 6L, 6L, 2L, 4L, 4L, 4L, 2L, 1L, 2L, 3L, 1L, 4L, 5L,
10L, 2L, 2L, 2L, 4L, 4L, 4L, 1L, 9L, 5L, 5L, 4L, 4L, 1L, 4L,
5L, 4L, 9L, 5L, 10L, 2L, 4L, 10L, 2L, 2L, 1L, 5L, 8L, 7L, 3L,
3L, 5L, 3L, 5L, 4L, 10L, 6L, 1L, 3L, 4L, 6L, 6L, 3L, 1L, 7L,
3L, 4L, 1L, 4L, 3L, 5L, 1L, 5L, 4L, 4L, 7L, 8L, 4L, 5L, 4L, 4L,
2L, 5L, 6L, 1L, 1L, 3L, 4L, 3L, 4L, 9L, 8L, 5L, 9L, 5L, 2L, 4L,
4L, 5L, 9L, 9L, 9L, 8L, 2L, 9L, 2L, 2L, 7L, 1L, 5L, 4L, 7L, 3L,
1L, 1L, 4L, 10L, 10L, 10L, 5L, 4L, 3L, 4L, 1L, 4L, 4L, 7L, 1L,
7L, 1L, 4L, 4L, 4L, 5L, 4L, 10L, 4L, 5L, 5L, 3L, 1L, 7L, 4L,
9L, 10L, 3L, 3L, 3L, 1L, 9L, 4L, 1L, 1L, 3L, 5L, 4L, 5L, 4L,
2L, 1L, 2L, 9L, 3L, 1L, 4L), Under.5.Mortality.Rate = c(137.3500061,
20.40999985, 30.80999947, 6.579999924, 178.6000061, 22.02000046,
51.13999939, 20.05999947, 6.059999943, 5.46999979, 19.12000084,
11.18999958, 79.55999756, 28.54000092, 19.89999962, 5.639999866,
79.80999756, 56.77999878, 9.569999695, 58.18000031, 28.07999992,
29.54999924, 34.72999954, 9.199999809, 15.46000004, 72.59999847,
145.4600067, 14.72000027, 85.63999939, 132.8600006, 6.480000019,
42.68000031, 150.5, 15.02999973, 185.2100067, 10.13000011, 27.06999969,
7.619999886, 22.79000092, 78.52999878, 113.0199966, 165.1199951,
13.39999962, 7.949999809, 7.730000019, 5.590000153, 6.460000038,
128.3200073, 5.489999771, 20.05999947, 35.97000122, 31.18000031,
30.44000053, 180.1799927, 126.4899979, 95.69000244, 9.210000038,
30.03000069, 4.010000229, 4.949999809, 83.83000183, 80.19999695,
31.62000084, 110.2300034, 4.889999866, 93.91000366, 56.91999817,
6.400000095, 20.76000023, 45.81999969, 163.9900055, 44.61000061,
90.98000336, 33.29999924, 9.079999924, 3.730000019, 79.45999908,
46.09999847, 43.70999908, 39.90000153, 6.769999981, 6.690000057,
5.730000019, 123.8099976, 23.86000061, 4.079999924, 39.5, 21.85000038,
96.69000244, 44.25, 8.93999958, 11.47000027, 49.27000046, 91.37999725,
12.98999977, 105.8600006, 12.56000042, 151.6100006, 19.94000053,
NA, 9.520000458, 4.71999979, 94.59999847, 129.8999939, 8.5, 28.04000092,
199.6399994, 6.849999905, 97.87999725, 16.95999908, 23.54999924,
NA, 52.43000031, 19.60000038, 12.39999962, 46.31000137, 150.2299957,
14.13000011, 61.52000046, NA, 69.44999695, 6.139999866, 32.08000183,
7.300000191, 36.22999954, 205.1699982, 172.3699951, 4.639999866,
34.79000092, 45.15000153, NA, 90.91000366, 22.34000015, 90.08000183,
26.45000076, 36.41999817, 36.63000107, 8.770000458, 6.639999866,
183.9799957, 79.04000092, 12.32999992, 19.40999985, 19.03000069,
142.6300049, NA, 16.13999939, 23.86000061, NA, 67.91999817, 20.27000046,
115.0800018, 7.21999979, 17.17000008, 184.1300049, 3.680000067,
9.020000458, 17.10000038, 4.900000095, 137.2100067, 42.95999908,
74.22000122, 5.260000229, 101.0999985, 42.54000092, 106.4199982,
4.489999771, 5.639999866, 16.70999908, 73.68000031, 12.68999958,
109.0500031, 21.54000092, 32.61999893, 5.940000057, 24.13999939,
37.29999924, 61.74000168, NA, 134.8099976, 18.44000053, 17.59000015,
40.22000122, 6.190000057, 115.1299973, 8.050000191, 161.7100067,
15.60999966, 54.25, 21.29999924, 23.29999924, 85.33999634, NA,
133.4700012)), .Names = c("Country.Name", "Country.Region", "Under.5.Mortality.Rate"
), class = "data.frame", row.names = c(NA, -194L))